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PREFACE

This book is the outgrowth of an undergraduate-graduate course
that the author has offered for the past few years at the Un.ivcrsi’g{
of Tlinois. '

The moedern theory of probability is based on the Lebesgue-Stititjes
integral and so requires s rather extensive background in anedysis’ for
& rigorous presentation. However, a formal development”of this
theory should be intelligible to students with considerablyflc@f‘s preparg-~
tion, and this book is intended to be just such a formallsdmmary. We
have attempted to keep the analytical level of the hook down to the
point where one year of caleulus can serve as.a prerequisitc for the
course. On the other hand, we have not he '%%Red to include impaor-~
tant theorems that cannot be proved on thiglevel. We have tried to
be honest with the student by pointing ‘out the lapscs in rigor that
necessarily ocour because of the natugesof our undertaking.

The true flavor of modern probaiﬁlity theory is best seen in the
limit theorems: thercfore Chapiets2 to 6 have been designed primarily
as an introduction to Chapfers 8 to 11. Stochastic variables are
introduced almoest simullangously with the notion of mathematical
probability, and the djgs(}f}e and continuous cases are treated side by
side throughout. Thisjds an unorthodox arrangement for an elemen-
tary text, but it seems desirable in view of cur aim to push beyond the
problem cauyag?}ﬁ permutations and combinations that is often
regarded as Anuntroduction to probability theory. _

A large pertion of the material in this book can be found, in slightly
differep%;f&rm} in Cramér’'s Mathemaitcal Methods of Siatistics and in
Usgensky’s Intreduction to Mathematical Probability. The author
takes"this opportunity to acknowledge hisindebtedness to thesesources.

Professor J. L. Doob has been very kind in undertaking to criticize
the manuseript in various stages of preparation. His suggoestions have
strengthened the work immeasurably.

M. E. MuUNROE

Usnpana, ILL.
November, 1850






CONTENTS

PREFACE . . . . . T

1.

. MATHEMATICAL PROBABILITY. . . . . . £\

PERMUTATIONS AND COMBINATIONS. e
Formulas for 2P, and *(,. Lxample—Poker Hands, Binomial Coeffi-
cients. References for Further Study. Problems

N
oA\

An Elementary Definition. Example—Roulette. The Addltlo.n Prinei-
ple. Example—Two Dice. The Axiomatic Deﬁnltlon Btochastic
Variables. The Dizcrete Case. Example—DBalls from a{x Urn. The
Continuous Case, LExamplo—Bombardment of Hcmm‘}ﬁierlcal Sereen.
Example—The Radium Atom, Bynthesis of Discrets and Continuous

Cases. TReferences for Further Study. Problem&\\ 7

N

. JOINT DISTRIBUTIONS . . . . . . aN)

Joint  Density Functions. Marginal ™ Distributions. Example—Two
Dice, Conditional Probabilitids? The Multiplication Théorem. Bayes’
Theorem. Construetion "of “Joint wBehsity Funections, Independent
Stochastic Variables. Joint Denqlty Tunctions—Independent Case.
Example - -Three Trna. Exalnpie—Pomts Chosen at BRandom. Exam-
ple—The Bulfon Needle Pr(@le:m Example—Genetics, References for
Further Study. Problems

N\

. REPEATED TRIABS AND ALTERNATIVE LVENTS . . .

Bernoulli Formule?s-Physical Version. Bernoulli Formula—S8tochastic
Variable Vergibn) Example—Random Walk Problem. The General
Addition .Féig;ula.. Fxumple—The Matching DProblem. References
for Furthe{ Sludy. Pmblcms

. MORE ABOUT BTOCHASTIC YARIABLES |

an(;‘t.wns of Btochastic Variables. Translation and Change of Scale

\‘R;épl exentation of Physical Situations. Sums and Products. Convolu-

tions, Neormal Distributions. TReferences for Further Study. Problems

. MOMENTS.

Moments of & Stochastie Valmble Fxample—Normal Distributions.
Example—Cauchy’s Distribulion. Ixample—The Radium Atom. Ex-
pectations.  Example—DBalls in an TUrn. Example--The Maiching
Problem. Variance, FExample—Bernoullian Trials. Covariance and
Correlation. Normal Correlation. Refercnees for Further Btudy.
Problems

vii

Q"

10

34

61

76

a7



viii CONTENTS 1

7. SPECIAL 'l\pPICS IN CALOCULUS. . .. .. ... S 122
The Beta and Gamma notions. The O, o Notation. Stirling’s
Theorem. Complex Exponentials. The Integral of Sin z/x. Refer-
ences for Further Btudy, Problems

8. LIMIT THEOREMS. . . . . . . e e e e e o 137
The Central Limit Eaw. The Pojsson Distribution. The Laws of Large
Numbezrs, The Law of the Herated Logarithm. References for Furiher
Study. Problems

%. THE CENTRAL LIMIT THEOREM. . . . . . .o L {N\151 4

Notation. The Lindeberg Version—Informal Discussion. Lxamples-
Feilure of the Law. Normal Distributions in Nature. Examplet->fijm-

- pPle Means, Example—The x2 Test. Characteriatic Functiqns{.} Apph-
eation to the Central Limit Theorem. Example—Cauchy’s Distribution.
Bernoullisn  Case—Detailed Proof. References for Further Study.
Problems oo ' LV

THE POISSON DISTRIBUTION. . . ... .NN". . . .. . 179

The Binomial TLimit. Approximation te Bermbullian Probabilitjes.
Comparison with the Normal Law. Exampr—’\xTelephonc Trunk Lines.
Example—Counting Bacteria. Fxact Poisgon Distributions. Example
—Radioactive Disinteprations. Two_Vidws of the Rame Problem. .
References for Further Study. Problems 3

10

1. THE LAWS OF LARGE NUMBERS. . . . ., . . . . . . 194
Proof of the Weak Taw. _ConvergeM in Probability. Applications i

. to Bampling, Fxample—<AN Numerfeal Problem. The \/Posteriori 4
: Approach., Proof of ’Elge’}brong Eeir. Txample— Decinfa] Expansions. Q

Reforences for Flll‘t%l\Sﬁldy. Problems !

INDEX. . ..., ()




CHATPTER 1
PERMUTATIONS AND COMBINATIONS

%‘*‘-*—e:j;ﬂlis chapter contains only a very brief summary of the subject of

permutations and combinations. It is designed as a review rathef\than
as an introduction to the subject. For the student who ihd# this
chapter inadequate, we have listed at the ond several references in
which he will find a much fuller treatment. In addition to these refer-
ences, we should alse recommend to the student the boek from which
he studicd college algebra. \/

We take up permutations and combinationsy 'not hecause these
topies form an integral part of the theory o 'pr;\Jbability, but becanse
they are uscful tools in solving many problém3 that illustrate the funda-
mental ideas of probability theory. TheXemphasis in later chapters
will be on these fundamental idecas, abd ‘the problems assigned there
are designed to help the student.@ifiderstand these ideas. But if a
speeifie example is to be of any hélp to the student in understanding a
genera] principle, he must beable to work the example without wasting
all his energy on mechaniﬁzﬁ details. The student who is weak in
arithmetie will have troNSiéivith principles of accounting; the one who
is weak in French grapimar will get lost trying to study French litera-
ture. Similarly, %6 main body of this course is apt to elude the
student who neg{@cfs the more or less mechanical aids such as those
found in thig chaptoer.

}i\..

1. Formuhis for P, and (.

Sappasa there are n objccts, distinguishable one from the other in
somaavay. If r of these n objects are laid out in some order, we say
that this procedure describes a permadation of the r objeets. If we
count all the different permutations thus obtainable from the entire set
of n objects (permutations being considered different if they are
described by different scts of r objects or if they arc described by differ-
ent methods of ordering the same r objeets), we refer to the result as
the “‘number of permutations of # things r at a fime” and denote it by
the symbol =P, '

The formula for "P; in terms of # and r may be obtained by the fol-

1



2 THEORY OF FROBABILITY [crap. 1

- lowing device: Yet us think of a permutation as describe.d by taking »
box with r compartments (numbered from 1 to r) and filling it by plac-
ing one of the n objects in each compartment. Now, therc are
obviously n different ways of filling the first c.ompartment-. For each
of these n ways, there arc n — 1 ways of filling the se.cond cor.npart-—
ment. Hence, there are n{n — 1} diffcrent ways (d:lﬁ"c‘rcnt in the
sense that they will lead to different permutations) of ﬁlhz}g the frst
two compartments, Continuing in this manner, we arrive at the
familiar formuls,: ~N

Po=nn—-Dn—2 - m—r+1. O
. 4 ’\ w

A neater way of expressing this formula is obtainec’l‘}gf “means of u
device the student should learn to use. The expression for P, is vory
similar to #l. The only trouble is that the first n_=< aMactors arc miss-
ing. If we interpret “missing” to mean theyhdwve been divided out,
we have L Y,
; nl 0

{1) P, = W‘\

We deseribe a combination of nthjngs r at a time by choosing a scl
of r objects from the parent set of objects and disregarding the order
(f any) of those chosen. Thus, for every combination of n things
r ab a time there arc *P, 20! permutations. Hence, the number of
permutations is r! times the number of combinations. In symbols:

"\\’ =p, = rinC,.
Bo, we divide'(k)'b"y r!and obtain the formula for the number of com-
binations ofapthings r at & timo:
P4

1
2y A o
@ ”.“\ Cr ri{n — r}!

~ '“l‘i]é cerabination numbers »C, appear in many different connections
N\ mathematics, and unfortunately there is no universally accepted
symbol for fhem, We shall stick to the symbol *C,. Others in com-

n
mon use are 7, r)’ 2Cry C{n,r} and Cur  Uspensky’s Introduction to

Mathematical Probalbility, which we recommend again and again as
collateral rea_d.mg, has the r and n reversed. The thing we call »C,
Uspensky writes €7, Because of this wide diversity of notation, the

student would do well to check carefully on the author’s convention in
each new work he reads.
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- An interesting arrangement of ‘the numbers *C, is given by Pascal’s
friangle: ' '

1
1 1
1 2 1
i 3 3 1
1 4 g 4 1
1 5 10 10 D 1
1 6 15 20 15 6 i N\
17 2 35 35 2Tt
NS “

Buccessive rows represent successive values of n, and in pa’gﬁ’row the
cntries read from left to right are the values of *C, giverpby tuccossive
values of . We have listed above the entries for n =8,1,2, ...,7
An interesting feature of the Paseal triangle is theb each cntry is the
sum of tho two above it (see Prob. 18 at the erxu%af this chapter). In
many cases this rule furnishes an easy way of computing combination
numbers. PANY;

The student will notice that each rog&ﬂ,df"f;he triangle begins with an
cntry corresponding to » = 0. Furthermore, for each 7, we have set

*Co = 1. This is quite consistent :X’ciftﬁl the formula,  If we note that
(n — 1)! = n!/n, then it secms reasonable to say that 0! = 11/1 = 1;
and (2) yields Q

7!
'\\"60 = m = 1.

The inclusgion of *Cy QHViDust makes for symmetry in Pascal’s triangle,
but we might qudstion its significance in terms of combinations, It
counts the so-called vacuous combination—ihe process of making a pass
at the set of\«n\\o‘b jects, but not taking any. In some problems we shall
want to celint this possibility; in others we shall want to exclude it.

The gtudent must learn to _distinguish beiween cambinations and
vermuiations. The distinetion lies in whether or not the order of
objects chosen is to be considered. For example, there ure 24 per-
muiations of the numbers 1, 2, 3, 4 taken three at a time:

123 124 134 234
132 142 143 243
213 214 314 324
231 241 341 342
312 412 413 423
321 421 431 432
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. However, there are-only 4 combinations—oneindicated by each
column ahove. All entries in & given column are merely rearrange-
ments one of the other, and these do not constitute new combinations.
Sometimes textbook problems ““In how many ways can so and so _be
done?? leave room for doubt as to whether combinations or-permuta-
ions are to be counted. For instance, we have given four answers o

ob. 6 ab the end of this chapter. Each represents a different inter-
pretation of the problem. Some of the interpretations are rather
artificial, but each is theoretically justifiable, and the student sheuld
determine what interpretation is used to arrive at each answer,

To anticipate for a moment, probability will be computed i’ many
simple examples by eounting ‘“favorable cases” and * pqssi:Ble cases "’
and dividing the former by the latter. The cases underéonsideration
will frequently be combinations or permutations, ab often we can
analyze the problem in cither way. In such prob@ms we must take
care to count the same thing in both numeratoraid denominator.

Occasionally, the student will want to use't.h@}a}gument we employed
to find "P,. That is, he will reason that, ifa first step can be taken in
ny ways and for each of these a second’sfep can be taken in ne ways,
then the two steps can he taken in nyly ways. In general, this type of
argument leads to a count of permutations. However, there are excep-
tions to this rule. The abovqsi’rlg’ument will lead to a eount of com-
binations in case the resulls of the two steps are not permutable, i.¢., in
cage the two steps are of apessentially different nature so that no com-
binations are countekﬁ@iée.

2. Example—Poker:Hands

Perhaps an ﬂIﬁuEtmtive example will serve to clarify this last remark.
Let us find ”th,\mnumber of 5-card poker hands of each of the following
types: % y -

{@33One pair (other 3 different)
<f~;(b) Two pairs (1 odd card)
¥ {¢) Three of a kind (2 odd cards)
{d) Full house (3 of a kind and a pair)

(e) Four of u kind

Here, presumably, we are to count 5-card combinations, At any
rate, let us proceed to do thut.

() There are 52 ways of choosing the first card. For each of these

there are 3 ways of completing the pair. Now, if we say there are
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52 X 3 ways of getting the pair, we shall be counting every combina-
tion twice. Foringtance, the ace of spades is one of the 52 possibilities
for the first card; and the ace of hearts is one of the 3 possibilities that
goes with it. However, the aee of hearts is one of the 52 bossibilities
for the first card; and the nee of spades is one of the 3 that goes with it,
Thus, in the 52 X 3 ways of getting » pair, we have counted (4.8,4H)
and (AH,4A8); but these 2-ways lead to the same pair. The same is
true of every other pair; so the number of 2-card combinations contain-
ing pairs is 52 X 34, . Now, to fiil the rest of the hand: For every pair
there are 48 ways of getting a third card which is different, F oreyery
such choice of the first 3 cards, there are 44 allowsble choices 0r the
fourth. Similarly, we are left with 40 choices for the «fifth card.
Again, straight multiplication yields a count of the permutations of the
last 3 cards; so it is‘necessary $o divide by 31, Now(there arises the
following question: There are 52 X 34 two-card admbinations which
are pairs; for cach of these there are 48 X 44 X 48/3! combinations of
8 odd cards. If we multiply these two numpéts together, do wo not
again count permutations? The answer 18409, ‘because these things do
not permule. We count no 5-card corqh'insjtions twice by listing the
pair first and the 3 odd cards second. ~Fhis, the answer to part (a) is:
52 X 3 48X 44 X 40
21 v 3 )

() Here we count the p@i& in the same way. There are 52 X 34
ways of getting the firstpair. For each of these, there are 48 X 34
ways of getting the seqond pair.  But these pairs permute. To multj-
ply these two numbérs together and quit would be to count aces and
kings and also kingfs, and aces. The result must be divided by 2 again.
Finally, for ey¢fy*2-pair combination there are 44 ways of choosing the
odd card. .eTh\a“odd card does not permute with the pairs; so multipli-
cation by %4 yiclds the total count of 5-card combinations containing 2
pa.irs...‘:'l‘hé answer is:

52X 3 48 X3
ar T o
" 2! -4

These two cases illustrate all the difficulties that arise. We leave
the remainder of the example as an exercise for the student.

3. Binomial Coefficients

8o much for-permutations and combinations as such. Before mov-
ing on, we should look at some of the other uses of the combination
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numbers *C,. Perhaps their most important appearance is in the

binomisal theorem:
i

(1) (a+ by = ) .

r=0
Because of the role they play in this important theorem, the numbers
=(’. are frequently referred to as binomial coefficients. In fact the
student will find that this is the name usually given to these numbers.

The binomial formula (1) is an identity in ¢ and b, That is, if a\fmd
b are considered as independent variables, the function on thé\eft is
equal to the function on the right at every point in the (ab pl‘mc
Clearly, if each side of such an identity is added to or mulf{lj)lzed by the

 same quantity, the result is another identity, Furgahérmore, differ-
entfion with respect to either of the variables yleld@another identity.
{Note that integration may introduce an extrangons constant.)

Since (1)—or any identity derived from i{Holds over ihe cntire
ab plane, it holds at any given point or along}a}ly given curve. Thus,
the substitution of specifie values for g, ahd b or substitution from an
equation relating o and & will yield aairect result. To illustrate the
use of these techniques for gettlng information from (1), let us set
a=b=1 Theresultis "

l
o Feen
. \ r=0
This says (among oﬁhfr thin gs) that the nuraber of all comhmmtwm of
n things (including the vacuous one) is 2,

i we take tlie,partlal derivative of (1) with respect to a, we have

7)) c
'..\;, wn—1 _— T r—Efn—r.
NO7 makirie ) et

L\
Multiply by a:
) .\". N ' . n
< \S ~nafe F byl = r;ﬂ mCar b
and consider the special ease a +5=
3 2 roCar(l — a)""’.= na.

r=@
The significance of this last resuli we shall see later.

used to obtain it is one commonly
with binomial coefficients.

The method
employed in making computations
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REFERENCES FOR FURTHER STUDY

Hall and Knight, Higher Algebra, London (1936), Chaps. XI, XI1,
XIIT.

Levy and Roth, Elemenis of Probability, Oxford (1936), Chaps. II1,
VIIL

Whitworth, Choice and Chanee, New York (1927}, Chaps. I, II, I1II.

PROBLEMS ~

i-/].. How many Greek-letter fraternities can be given distinet pamhes
*of 3 different letters each? (There are 24 lettersin the Greek aﬂgﬁ*al}ét.)
_ Awus. 2P,
2. The same as Prob. 1, but the letters in a namarnedd not be
different, . " \ Ans. 243,
3. ow many fraternity names-are there with eiﬁh}r 2 or 3 letters,
- all different? with repetitions? Anas. RN 24Pg; 247 4+ 243,
A, In how many ways may a party of 10 pgg}ﬁe be seated in a row?
at a round table? 2\ Ans. 101 9L
8. Inhow many ways may a party of 3 n})‘dplcs be seated at & round
table with men and women alternating® .~ Ans. 30 x 41,
6. In how many ways can 52 card§be dealt into 4 hands of 13 cards
each? Ams. B2, B21/(131)4, 521/41, 521410131+,
“7. How many different 13«cafd hands can be obtained from a
52-card deck? Q Ans. 20,
8. How many of these'\ilS-uard hands will contain a 7-card suit?
D | Ans. 4.0, 0,
9. How many 3-eard poker hands contain throe of a kind, a full
house, four of u kihd? (Sec Sec. 2.) Ans. 54,912; 3,744; 624.
10. How mgqﬁiﬁtegers less than a billion contain five 7's? .
N, N\ A?’ls. 04. 903
11. Ionv.in\:lny integers less than a billion consist of 1’s and 2's only ?
AN . Ans. 2199
12<‘I§It>i\-' many of the integers in Prob. 11 contain three 1’s?
_ Ans.  210.
13. How many different ordered pairs of numbers can result from
the throwing of two dice? Ans. 38,
14. Tlow many of the results in Prob. 13 give a total of 77 117 -
o Ans. 6, 2.
15. How many 5-man basketball teams can be chosen from a squad
of 127 o Ans. 792,
16. If the 12-man squad in Prob. 13 consists of 3 cenlers, 5 forwards,
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8
many teams (1 center, 9 forwards, 2 guards) ean be
:ﬁgs:ng?uards, how many o

"7, Show that "Cr = *Cor.
18. Show that a1, = 2 + "o . |
19, Use the identity in Prob. 18 to prove the hinominl theorem by

mathematical induction.

90. Show thab
2 (~1yC- =0 o
: r={
21, Show that < ¢ “\
“ 1 7 O
rliin — ! T N
: =0 # §'
99, Show that _ \\\\
E r2rQar(l — a)*™” ={i§f\[’—- a) - Ly
=0 Nx

X
N
»

23, Show that, for 0 < & < g =

O jent of
Hint: (1 + 3:{;3\,-} 2)* = (1 + 2)*=.  Compute the coefficient @
#* on each side of this equation.

24, Shdwthat,

:o’sis.: "
. i"\"
N nCr 2= EnC“_
& 20( )
,,(f;" 25. Show that, for 0 < 2k < n,
\ ®; 2k
\" 2 (_1)r O *Copr = ('_1)“‘ e

. r=
Hint: (14 2)*(1 — 2)* = (1 — 2)~.
. 26, Show that {except, perhaps, for an additive constant)

L
_ 3
%' A zg,fofx""(l —a)y = —k"Cs J;x g (L — D b

Hint: Differentiate with respect to z.
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27. Show that (except, perhaps, for an additive constant)

ol

nC"ﬁQ;r(l —_ x)'n—r = (ﬂ _ k) “O}c j;l tk(l _— t)f&—k—l dt_

r=0

Note:  The constant of integration left unaccounted for in Prohs. 26
and 27 is actually zero in each case. Sce Prob, 12, Chap. 7.



CHAPTER 2
MATHEMATICAL PROBABILITY

'\

To the pure mathematician, probability is merely & fur.mtion\sati&

fying certain axioms. TLater in this chapter we shall give gnpnt of

axioms that will serve as a basis for the development of’ tha ‘mathe-

matical diseipline known as the ‘‘theory of probability.sJFirst, how-

ever, we should give some attention to-the question/di'the physical
gignificance of probahility. : “‘\

4, An Elementary Definition ANV

Probability might be described as a ¢ ‘mgaéfui"e of likelihood.” That
is, the probability of a physical event will'h#"a number which deseribes,
in accordance with certain fixed conwéntions, the likelihood of occur-
rence of the event. N

For any such numerical meagtﬁ‘éfnents we have to agree on a scale,
and the standard convention: is that probabilities range from 0 to 1,
with impossible cvents asdighed probability 0 and logically cortain
events assigned proba 'lilii}“ 1. Furthermore, wo want the intermediate
probabilitics assignediin'such a way that, the more likely an event is,
the greater will l:ze\’iisbrobabi]ity.

This last resulf an be accomplished in many ways, and we mj ght be
tempted to beGnore explicit by saying that we want probability pro-
portional\,tb\likelihood. However, likelihood is too abstract a quantity
for thigto make much sense. We get a more satisfactory picture by
cggsidéfing the frequency of occurrence of an event. Let us say that
t]{e‘,jﬁ'obabilit-y of an event will be proportional to the frequency with
which we should expect the event to oceur. Clearly, the factor of
proportionality (to give probabilities ranging from 0 to 1) is the
total number of opportunitics for occurrence of the event. SBo we
might say that the probability of an event is its expected relative
frequency.

The student must not confuse what we have called
tive frequency”
or future).

13 expecied rela-

with observed frequencics of seeurrence (past, present,

The question of the relstionship between probability and
19
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experimental frequency is one that can be discussed more intelligently
at the end of a probability course than at the beginning. We shall
return to it in Chap, 11, All we want to point out here is that if there
I8 any convineing reagon for expecting a eertain cvent to happen with
& certain relative frequency, then it is that relative frequency (not its
square, for instance) that we should take as the probability of the given
event,

The usual procedure in determining the proper assignment of prob-
abilttics to physical events is to begin with the simplest cases, whefethe
proper assignment is obvious, and develop rules and formulas to
describe more complicated casos in terms of {hese siniple? ones.
Accordingly, we begin with a definition thal covers the,_simplest type
of physieal situation. R N

& 2
Defindtion 1. Tf an experiment can produce ﬁ’hiﬁerent results all
of which are equally likely and if » of these resdl are defined as favor-
able, the probability of a favorable result {s}\ 7.

Now, equally likely results have the same expected relative fro-
quencies. It does not matter whether we regard this as an obvious
stutement, a definition of equal likelihood, or a definition of expected
frequenicy. The point is thaf :bécause of this fact (or definition, or
what have you) Definition Iis consistent with the idea thaf probability
be proportional to equqtg\d frequency.

While Definition 148 Madcquate as a basis for the development of
the mathematical fheory of brobability, it is essential that we have
somcthing of the §6rt 1o relate the notion of probability to that of like]i-
hood. The théa¥ems and formulas of mathematical probability theory
are best deyeléped from s set of axioms (see Sec. 8), and that is the way
we shall prbéeed. It would be very unsatisfactory, however, to have a
purelywbstract theory with no relation to physical events at all; and
Defifiition 1 (and its twin brother Definition 3-—see Sce. 12) serve as
im‘p‘oﬁ-ant connecting links belween the mathematical theory and the
physical world. Furthermore, these physical definilions (wherever
they apply) give probability the physical meaning we should Iike it to
have—a measure of likelihood. '

We are still faced with the (essentially psychological) problem of
determining when cvents are equally likely, We have suggested
equally likely events as the simplest physical situation because they
are the easiest to spot with & reasonable degree of sssurance. Funda-
mentally, what we do when we apply Definition 1 is to assume the
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equal likelihood of certain events. We should try to make these
assumptions reasonable, but logically they have to stand as assump-
tions only. There is no way of proving them.

The necessity for making assumptions in order to fit a physical
problem to 2 mathematical formula is not peculiar to the caleulus of
probabilities. In almost any caleulus book one can find the problem,
“Find the work done in filling an upright eylindrical tank ¢ fect in
radius and £ feet in height by pumping water in through an inlet in the
bottom.” At this point, one blithely writes ~

N\

W = 624 j;}h watz dx. R

Now no physical tank is a perfect cylinder; the inlet pfeéé‘nts an addi-
tional irregularity; water is not quite a perfect fluiddgte. Ilowever, if
we assume that none of these irregularities exists, then the mathe-
matieal theory of the definite integral guara{ﬂ@eﬁ that the above is the
correci answer. W

Probability is not alone among the branches of mathematies in that
assumptions are neecessary for iis appficétions to the physieal world.
Its only claim to fame in this regﬁeéfj is that in probability problems
the experts disagree more violefithy and argue more loudly about the
assumptions to be made. N

4

. Exampl%Roulette'\“: »

As an example of\the type of situation deseribed in Definition 1, lot,
us study the gam® of roulette. There are mindt variations here and
there, but thesténdard game (at Monte Carlo) is played with a wheel
vf'ith 37 eqt}gﬂly spaced slots, numbered from 0 through 36. In addi-
tion togmmumber, each slot has a eolor. The zero is green, and the
omggfare either red or black (18 of each). Actually, the colors alter-
,ng\,tg\around the wheel; but the numbers are irregularly placed in such

Nevay thet 1,8, 5,7,9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36
are red and the others are black. The wheel is spun, and a bai] 13
rolled around.it. When wheel and ball have slowed down sufficicntly
the }?a]] falls info a slot; and bets are then paid off on the hasis of t-hé
slot into which it falis.

The educational feature of the game from our point of view is the

way in which bets may be placed. Therc is a board on which the num-
bers are arranged as follows:



sEC, 5] MATHEMATICAL PROBABILITY 13

0
1 2 3
4 5 6
T8 9
10 11 12
13 14 15
16 17 18 Q)
1o 20 21
29 23 24 O
25 26 27 N
28 29 30 \\
31 32 33 ¢

3435 38 o

The colors are indicated on the board ‘téj; We have done this by
underlining the red numbers. Bets aréuhade by placing chips at an
appropriate place on the board, Ond May bet on a single number, any
2 adjzcent numbers (either acrossdidown, not diagonally), any square
of 4 numberg, a combination of %8l with any 1 or with all 3 of the num-
bers adjacent to it, any row 403 rumbers, any 2 adjacent rows, or any
column of 12 numbers, ’i(“]?he zero 1s not considered as being in the
middle eolumn.}) In é@ftion to the sbove number array on which
these bets may be inghicated, the board provides spaces on which one
may indicate bety, @y the numbers 1 to 18 (passe), 19 to 36 (manque),
the even nurnl:;e«iﬂfi the odd numbers, the red numbers, the black num-
bers, and eaqhiydf the three dozens 1 to 12,13 to 24, 25 to 36.

It would'sera reasonable to assume that the 37 numbers are equally
likely (thére is no way of proving this mathematically): therefore we
may.dpply Definition 1 o find the probability of winning any particu-
thqc"ﬁ. The point we want to stress here is that the description of the
game furnishes us with our situation (37 numbers) and our law of
probability (47 times the number of numbers covered by the bet).
The definition of “favorable” (t.e., the particular bet we want to talk
about) has nothing to do with this. However, having described the
situation and formulated the law of probability, we can immediately
compute the probability of winning on any of the bets listed above.
The probability of winning on red is 1%47; on even, 184 on the
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first column, 1247; on the first two rows, %477 ete, Therc are 155
different bets covered by the discussion we have given; so, with a sin-
gle description of a situation and a probability law, we solve 155 diffcr-
ent problems. As a matter of fact, from a purely theoretical point
of view, we solve a lot more than that. In Chap. 1 we saw that the
total number of combinations of n things, including the vacuous one,
is 27, Wenow exclude the vacuous combination and see that there are
29 — | = 137,438,953,471 different bets imaginable, though only 155
of these arc accepted at Monte Carlo.  Clearly, each of these hundresd-
odd billion problems is solvable immediately from the law ol preh-
ability we have formulated. RAY.

All this is typical of probability problems in general. The malhe-
matical formulation should lead to a law which gives plzé':})mb:tbili1 ¥
of every event connecfed with the given situation. o ‘Usually not ull
this information will be needed in any given study} nevertheless, it
will be available if the problem has been correch formulated.

x:\ g

6. The Addition Principle

Suppose, in the roulette game, we place.fwo bets on the same spin of
the wheel. Suppose, further, that np.’ljiumber is covered by both hets.
For example, we might bet on theJitst and third columns, not on the
first column and the second rowy® This latter combination covers the
4 twice. Under these circusibtances, it is easily seen that the prob-
ability of winning one or, t‘}i}-ot-her of the two bets is equal to the sum
of the probabilitics of Wihning each of the two separately.

This addition prixgiple is a property of probabilities in general, In
fact, for situatignsléovered by Definition 1, it is almost obvious. If
1 is an event/gnsisting of 7, results and E, is an event consisting of 7«
results frorﬁi]ié' same experiment and if no one of the n possible resulfs
is contajfied in both events, then the two events together consist of

71 +?\"2 esults.  So, by Definition 1, the probability of one or the
othéris

) 2

% 3

?'1+'-_"2

¥ Ty
i T H

but the right-hand side is the sum of the probabilities of the separate
events.

7. Example—Two Dice

Before pro.ceed_ing to formal mathematical definitions, let us consider
another specific example: the problem of the total thrown on two dice.
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We might begin by saying that the sttuation is described by noting
that there are 11 possible results: fotals ranging from 2 to 12, inclusive:
This is a legitimate description of the situation in that any event con-
cerned with totals (for example, the total is 2, the total is 2 or 9, the
total is odd, ete.) will be some combination of these 11 results. How-
cver, Definition 1 is not directly applicable because we can find no
legitimate excuse for calling these results cqually likely; but we can
use Definition 1 and the addition principle to formulate a law of prob-
ability to go with this 11 result situation, Q)
On breaking the problem down further, we find results of a,different

kind which secm to be equally likely. ‘These are the ordgr\é&ﬁairs of
numbers indicating the results on the individual dice. | Fliere are 36
of these, and they may be arranged in a very suggegtive manner ag
follows: ' ¢ >

1)

(1,23, (2,1) O

(1,3), (2,2), 3,1) O

(14), (2.8), (3,2), (4,3

(1,5), (2:4), (3,3), (4,2)(5,1)

(L6), (2,5), (3,4}, 643), (5,2), (6,1)

(2)6): (355): (414;)}(5:3)1 (8:2)

(3:6): ('115); (5:4)) (6:3)

(4,6), (5,50\(6,4)

(5,6), (6:5)

(6,6\’\ e
TFrom this array, iy clear that Definition 1 gives us the following
results: P\

Total 2 3 4 5 6 7 8 9 10 1 19
Probabilif36s 265 345 %65 s e e s 346 2is Yo
Now, j;\lid’addition principle gives us a law of probability applicable to
alleyehts admissible under the 11-result situation: To find the proba-
bty that the total is any one of a set of numbers taken from the sot 2,
3, ..., 12, add the probabilities given by the above table for the
individual numbers in the set under consideration. Using this law,
we find, for cxample, that the probability that the totul is 5 or less is

Y85 + 266 + 356 + 44p = 3.
The probability that the total is odd is
236 + Mo + 846 1+ 445 + 246 = Ls.
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Probably the most important observation 1;0 be ma-de. concerning
this example is that the general law of probability came dlr?ctly from
the table of probabilities for the individual numbers, In this case the
table was obtained by using Definition 1; but, no matter how we
arrived at such a table, it would still lead directly to a general [ormula~
tion of the probiem.

8. The Axiomatic Definition

In discussing roulette and dice we have chosen particular pointsduar
emphasis in order to eall attention to the things that a matl1om=\ift:ia111
expects of a law of probability. We might summarize theseddeds as
follows: As a basis for a discussion of probability there must, bes funda-
mental set of ““things” (numbers, number pairs, “resultsy” or what
have you). Every subset of this fundamental set @il be called :n
event. Then, there should be a law of probabilisg{(usually called the
probability distribution function or, frequently, sitpbly the distribution
funetion) which defines probability for eagh’yeévent. The addition
principle should hold for this distributien function. Furthermore,
the probability of each event should be af nnmber between 0 and 1, and
the probability of the entire fundamentdl set should be 1.

These properties of the distribution function are the oncs ordinarily
used to give a purely abstract,xiomatic definition of mathematicul
probability. Let us formuléte them a little more precisely in the
language of pure mathemsties.

Let us think of the fundamental set of results as a set of points. In
other words, let us¢égnstruct a mathematical model of the physical
situation in the foufa of a point set, each point of which represents one
of the possiblpsestilts of the experiment. The set of all such points to
be considergdhin any given problem we shall call the event space. We
shall desigiate this event space by S.

In the examples we have seen so far, the event space S has been a
ﬁ,nij,g\point sct. In the roulette problem S eontained 37 points; in
the’dice problem, 11 points. Tndecd, in any problem directly covered
by Definition 1, 8§ will contain exactly n points. However, there is
no need to restrict, our purely mathematica) model in this fashion; and
1t 1s here that we begin to transcend the clementary physical definition.
Let us say, then, th.at an event space is any point set, finite or infinitc.
. llm_nglt_s_ifm'lll be to define cvents as subsets of §; but, in the
interest of being honest ab(fut it, we must point ouf that, in certain
cases when the space has infinitely many points, not every subset
should be called an event. In the terminology of modern Integration

1 T e termunology of mog

—— -
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theory, it is only the measurable subsets of § that we want to consider.

This is no place to discuss the measurability of point sets. . Insfead,
let us content, ourselves with the following comments: 'The space S may
contain;

(@) A finite number of points

{6} An infinite sequence of points—for example, the set of integer

points on the real line

(¢} A continuum of points—for cxample, the set of all points on a

line or the set of al! points in someo line interval \
oA\

In the first two cases, S is called discrete. In a diserc fasﬁéce all
subsets are measurable, In the continuous case this is ng longer frue,
but a nonmeasurable set is a very weird sort of thiﬁﬂ—mdeed 80
unusual that it is of consequence only in advanced theo‘retma] consider-
ations in probability.

To return te our main line of discussion, werdefine an event as a
measurable subset of 8. Two events, If; ag&}\xﬁﬂz, will be called mutuallty
exclusive if they have no points in common.) A (finite or infinite) col-
lection of events will be called a collectlon ‘of mutually cxelusive eventls
if no two of the events have a pumt, i common. The complement of
E, denoled by £, is the sct of ally pmn’rcs of 8 not contained in E. If
T2, and E, are {wo point scts, weishall denote by B, + E. the set of all
points belonging to either FQ or By (or both); we shall denote by E K,

2%

\\" L+Ep

( ~ R

O £ }
P \

P : 4

4 v L_Y_._J y

s\:\'{ N J

3 . £z

\ Fr1a, 1.

NN
\ B

the'set of points belonging to both £; and £:. Naturally enough, the
sets &) + Fp and K are called the sum and product, respectively, of

Eyand E;. We shall use TF, and IIE, for the sum and product of any

(finite or infinite} number of sets.  The student should hardly need to
be cautioned that addition and multiplication symbols may be applied
to both sets and numbers in the course of a single formula and that
their meaning depends on the type of thing to which they are applied.

At this stage, it might be a good idea to draw a parallcl between the
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terminology of events considered as point sets in event space and that
of events considered as results of a physical cxperiment:

Point SBets in Event Space Results of o Physical Experiment
E 15 vacuous (B = 0) E 15 Jogically impossible
E=3 E must oceur
E,+ E; The result is either E, or I,
E.E, The result is both ¥, and 7,
By and E; are mutually exclusive E; and K. are logieally Ineon-
(B Bz =10) patible. Ifonecoccurs, thie ar
does not O\
E E does not oceur o\
Esis a subsct of By If E; occurs, so dogs E. Esim-
plies B, A
&

Awiomatic Definition of Mathematical P-mbabﬂifs_"z}}\ Given an event
space S, pr{E} will be called a probability (Qstribution function {or
8 if it satisfies the following axioms: 4D

A. prif} > 0 for every ovent ¥ of §)

B. pr{8} =1, N

C. LB, Ey K, . .. isany (ﬁl}ité or infinite) sequence of muiuully
exclusive events of S, then N\

{pngﬂ} = Ep?"{En} .

~
These axioms aréy 1% the most part, & repetition of the informal O~
ments we made before, hut in axiom ¢ something new has heen added.
"This is the fadt tKat, the addition principle should hold for infinite as
well as ﬁn}t@;collections of mutually exclusive events. So far as this
course \i.sScuncerned, our most common use of axiom ¢ will be as a
finite_addition principle. Occasionally, however, we shall want to
applytit to infinite sequences of mutually exclusive events; and the
i%udent should bear in mind that this extonded addition principle is
ecessary for a completely satisfactory development of probability
theory. )
. For a given space S there are many wa
tion function priE} satisfying the axioms, For example, if S is the
set of n}lmbers 2,38 ..., 12, we may assign a probability of 1{; to
each p.omi.: and use the addition brinciple to get g completely satisfac-
tory distribution function. Op the other hand, we have already scen
that the assignment of probabilities we made in connection with the

ys of construeting a distribu-
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dice game accomplishes the same thing in a different way. The
axioms merely tell us what a function must be like in order to be elassed
as a distribution function; the construction of the function in a specific
problem will depend on the physical interpretation to be made of the
mathematical model.  Dut more of this later; first, let us look at some
properties of the distribution function that are easily derived from the
axjoms.

Theorem L. If Sis an event space and pr{E} is a distribution func-
tion for 8, then
.\\

(@) priE} =1 — pr{E} for every E in S. O

{h) The probability of the vacuous set is zero. (pr{ } = 0.)

{e) Forevery Ein 8,0 < pr{E} < 1. A

(@) Tt By is a subset of By, pri#s} > priB.}. "

(¢) For any collection Bh, By, Ej, . . . (mutodlly exclusive or not),
priZE.} < ZpriE.}. NY;

The first four of these are almost obﬁmg but the student should
check for himself that they follow duPCtIy from the axioms. With
vegard to (¢), we might remark that: ‘Lh{ proaf depends on the fact that,
if any of the sets have points in cﬁmmon the probability of these com-
mon points i8 counted only om‘,e on the left-hand side, but more than
once on the right hand bldl?\ Tror more about sums of arbitrary sets,
see Chap, 4. #

One or two of thesp }&ults deserve further comment, Referring to
our table of pa,railels In terminclogy, we see that (b) says that, if an
event is logicallyhithpossible, its probability is zero. This is Very com-
forting, but i€ important to mote that the converse is not irue.
There are I‘Q}m; examples (some of which we shall see very shortly) of
events with' probability zero which are by no means logieally impossi-
hle. Emallv we should note that a very uscful way of stating (d) is:
IF\E‘% wnplics £y, then pr{E,} > pr{Es}.

9. Stochastic Variables

So much for the abslract descriplion of mathematical probability.
The question that now arises is: What terminology and notation can
we use to describe specilic distribution functions? Can we write down
formulas for them? If so, in terms of what?

A very useful notion in this conncetion is that of the stochastic vari-
able. The word “stochastie” comes {rom a Greek stem meaning
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chance. The expressions “chance variable” and “random variable”
are also used by various authors as being synonymous with the expres-
gion “stochastic variable.” The general idea is this: Instead of trying
to deseribe a function pr{E} over point sets, let us associate the points
of the event space S with numbers and then describe the distribution
funetion over sets of these numbers. Now when we sy, “ Assoctute
the points of S with numbers,” that is only another way of saying,
“Define a real-valued function over the points of 5.7 8o the formo
definition of a stochastic variable is very simple. ~

Definition 2. If S is an event space with a distrihutio;; \Ti\n\rt ion
attached and if z is a real-valued function defined over the peints of 5
(d.e., to cach point of S there corresponds a value of a),dhen « will be
‘called a stochastic variable. RS [,

Now, the distribution function for § attomatically defines the probu-
bility of each value or set of values for z. +For instance, priz — o]
is the probahility of the sct in 8 fer(Which z = a. Similuly,
pria < < b} is the probability of the\sét of points in S for which
a <z <b. However, this does noj:«’:\%’ork the other way unless {le
correspondence between points of &Sind values of zis 1 to 1. Buppose
there are two points P and Q S for which #(P) = x(()) = a; then
priz = a} = priP + Q), bubd this determines neither pri{P} nor
pr{@}. Our present put;pfésk is to see how a function of the stochastic
variable ¢ can be defired s0 as to determine completely the distribu-
tion funetion for th¢ $vent space S. Therefore, for the remainder of
this chapter, wegonfine ourselves to a discussion of stochastic variahles
for which the tsbrrespondence between points of S and values of @ is
1io0 1. M

This g'é%icts the discussion in two ways. First, the requirement
th&‘f .Ehﬁ' points of S be in I-to-1 correspondence with a sob of real
DHI{—flberfs means that S is (or might as well be) a set of points on a line.

gage 1t 18 impossible, impractica.l, or slightly undesirable to represent
the event space as a linesr set, other metho
representation by means of
These are diseussed in Chap.

ds of petting a complelc
stochastic variables will be called for.
by : 3 But, even for event spaces on s line,
ETE ure othcrr_stochastm variables than those given hy 1-to-1 corve-
spondences'. lh_ef?e; too, have their uses; and a more general discussion
of stachastic variables will be given in Chap. 5
Suppose, then, that S is a set of puints on s line,

. The most obvious
way to associate numbers with thege poinisis to thin

k of the line as the
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z axis and sssociate with each point its abscissa. The guestion of
where we place the origin with respect to the set 3 is of no great impor-
tance for the present. Semetimes a strategic placing of the origin will
sinplify computations. More often, the origin is located so that the
values of the variable z will have a useful physical significance. Tn
any cage, the usual plan is to decide what values we want z to run
through and place thoe set S accordingly.

10, The Discrete Case

For the discrete case (a finite set or a sequence) the plan used ifdhe
dice problem will serve admirably.  Let us define a function fgirq such
that, for each value ¢ assumed by =, f(a) = prix = a} (this prabability
to be determined by hook or erook or Definition 1 from\tlié physical
situation). Then, if E is any set of x values, we set o\

SV
priB} = ) f@). O
zin & p \\:
Tt is an easy matter (which we leave to thé student) to check that, if
flx) iz defined as we have suggested, theabove formula gives a distri-
bution function satisfying the axiomss “Fhus, for the discrete case, wo
have accomplished the cnd we haddmmind.  We have defined a func-
tion f(z) of the stochastic variai’ﬂé”m which describes completely the
distribution function for the event space over which z is defined. We
shall call f(z) ihe probalilifg\flenction for the stochastic variable z.

If we take any funcgigh f(z) and define from it a funetion of sets by
adding the values ofyf (}} over the sel in question, the resulting funetion
of selis will satisfy.thé addition axiom €. However, we get 4 if and
only if we require\that f(z) > 0 for every 2; and B is equivalont tothe
condition Z\}(:L) = 1. Thercfore, we might say that f(z) will be

i 8
called a';ﬁ'ﬁjbability function if it satisfies these two conditions. T.et
us“gunih‘:larize all these remarks as follows:

\3 s .
\heorem II. If f{z) is a function defined over a diserete set S of
values of # and if

(a) flx) = 0 for every zin S,
®) @) =1,
x;S

then f(x} is & probability function, and x is a stochastic variable with a
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distribution function given by the formula

o) priE} = Z flz).

rin B

Conversely, if z is a stochastic variable with a distribution function
pr{E]}, then a probability function f{z) is given by the formula

(d) ' f(a) = priz = a} for each a in 5.

All this is fairly obvious in the finite ease. Even if 8 is an infthite
sequence of points, the statements in Theorem 1T ave casily, ckuclm_l
provided that all infinite series cncountered are convergent, $ Nuw, (1)

says that ; [z} is convergent; but we must deal with ﬁ;gﬁs‘ over sub-
sets of S as well—¢.e., with subscries of Z flz). 1}.@&!5331‘}’ and suffi-
F b 4

cient condition that every subseries of z f (:t:).Qe,‘convcrgcnt isthat thig
5 L&

series itself be absolufely convergent——i.ﬁ.;':t‘hat E |f(x}] be convergent.

M 5
Condition (a) tclls us that If(a)] =.:f(:i:) for each z; so the convergenee
guaranteed by (b) is automaticalligibsolute convergence, and it follows
that all subscries are convergent!

Theorem II suggests a{Practical way of representing a physical
situation by a mathematical model. In the diserete case, if o proba-
bility function is fully deseribed, the represcntation is complete. The
significance of this(famark is very graphi cally illustrated by the obser-
vation that in the'roulelte problem a complete tabulation of the proba-
bility functionnflz) would require only 37 entries, while & complelc

tabulatign‘df*the distribution function priE} would require over 137
billion e‘éﬁrfcs.

steps involved.

Theorem IIF (Working Bule). To set up a discrete stochastic vuri-
able representing s given physical situation

{a) Take as values of any
and devise g reagsonshle sehe
result of the experiment a val

set of numbers that seems appropriate,

we for associating with each possible
ue of z,
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{6} Dctermine from the physical situation the probability of each of
the results.  Definition 1 may be useful in this step.
(e} Set f(z) cqual to the probability of the result represented by z.

11. Example—Balls from an Urn

To illustrate, step by step, the use of this rule, let us consider another
simple example. An urn contains 5 red balls, 3 white balls, and 7 blue
balls. One ball is to be drawn at random, and we shall be interested
in the probability of its being a certain color.  Represent this situation
by a stochastic variable, .

O

(2} We want to distinguish three possible rosults of the expcnment
so we need three values for . There being no particularireason for
doing otherwise, we shall lel these values be 1, 2, and Pand associate

them with the three possible results as follows \
1: A red ball is drawn 'xi\\:
2: A white ball is drawn A\ N

3: A blue ball is drawn o\
(6) If we assume that each individ{ial“b'lil is as likely to be drawn as
any other, Defifiition 1 tells us th}}t the probability of drawing a red
ball is 3{5 or 14. Smnlally, that of drawing white is 1£; blue, 7{5.
(¢) Putting these result&tp;:ether, we define f(z) by the following

table:
&
\ 1 2 3
Q7 @ % % Us
12. The Contirfgous Case

Turning{'u\ﬁ&;, to the continuous ease, suppose, first, that £ iz the
cntire z axis. The recollection that, i f(x) is integrable,
4 ~\' ¢

Q7 [rwat [ i@ = [

would suggest that an integral might give us a function of scts satisfy-
ing the addition axiom. Actually, if we think of an integral as it is
introduced in first-year calculus, there are two things wrong <with this
suggesiion. Buch an integral cannot be defined over every measurable
set, whereas a distribution function should be. Furthermore, there is
trouble with the addition principle. This principle holds whenever all
the integrals concerned arc defined ; but if we allow infinite sums, it may
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fail to make sense with probability defined as a Riemann‘ (first-year
caleulus) integral. These are serious theoretical difficulties, but in
this course we shall ignore them. This means that we shall sef up an
integral, call it a distribution function, and say it satisfies the axioms,
whereas, actually, it does no such thing. Our justification for doing
this is that there is a theory of integration, due largely to the French
mathematician Lebesgue, which overcomes both these difficultics; and
the modern theory of probability is developed in lerms of these
integrals. ~
In order to present a treatment representative of presen b-(la.y"t}'leory
of probability, we shall deseribe distribution functions as j{logials.
On the other hand, in order to stick to concepts familiar tathe hegin-
ing student, we shall write all such integrals in the:fé,;nili:il' form

f ’ flx)dx or perhaps as multiple integrals of the type“, encountered in
3 ,

first-year caleulus. The general cffect of this isbhat we shall seem to
assume that all events can be represented by dntervals on the @ axis,
We trust that the student will realize that thig i not actuall y the case;
but we trust that he will benefit by havih $he mathematical develo p-
ment put in terms of concepts he undefsthnds.

Finally, we should like to reassusd the student that, whenever the
Riemann integral applies, it gives correct results. The Lchesgue
theory does not introduce diffefent mechanical procedures; it only
covers a wider variety of cafds,

. . ~
Having decided, theg,., to set priEl = j;_;» flx)dz, what must we
require of f(x) in orgie;'\o have axioms 4 and B satistied? Clearly, A
holds if and only 4 §72) > 0 for every z; B says f " fzdz = 1.

We have ]?Piéri‘ operating so far on the assumption thaf S was the
entire 2 ig,) If wehavea prohlem in which it seems advisable to use
only a part of the line, we can set f(z) = 0 on the part we do not use,
a.nd a\ll,formu]a.s will be perfectly correct. Theref ore, these other con-
binnens event spaces need no separate discussion,

o, again, we have a function f(z) of the stochastic variable and an
ol_oer%tion on that function which will determine all the values of the
distribution funetion. Tn the contiruous caso, this function f(z) is
c:alled the probability density function or, as a rule, just density func-
tf:on. We have i:,hus developed the first half of a theorem for the con-
Theorem IT for the discrete case. How about
t is, given a distribution function, how do we
on? This is practically obvious; the distribu-
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tion function is obtained by integrating the density function; so the
dcnsit-y function must be the derivative of the distribution function.
1et us now state our theorem. The student should note the parallel
between this and Theorem 11

Theorem IV. If f(z) is a function defined over the entire z-axis and
if

{a) flz) = 0 for every z,
L] .\
(b) L f@dz =1,
- .\:\
then f(z) is a density function, and « is a stochastic variabl'e:\with a
distribution function given by the formula N
_ . AV
(©) pr(E} = [, fom. :

Conversely, if ¢ is a stochastic variable wit ‘.;;L.\h'lstribution funetion

pr{f} and if F{f) = priz < i} isan indefinfte integral, then a density
function f(x) is given by the formula A\

")

@ 16 =& r .

Apropos the remarl, weir\nade to the effect that probability zero
does not necessarily, ean logical impossibility, let us note that
j;af(:z:)d:c = 0; thysin’the continuous ease the probability of a single
point ig zero. ’Fﬁ?t-hermore, the sum of even an infinite sequence of
ZEros 15 still'zero; therefore in the continuous case the probability of

" every disc rete’set is zero. From this it follows that, if we talk about
the prob’;ﬂihjty that x is in & certain interval, it makes no difference
whgthé»,f ‘or not we include the end points as part of the interval; that
igppla <z <b} =prie<e< b}.

here still remains the problem of finding 2 density function to go
with a given physical situation. Definition 1 is of no use whatsoever
here, because it is limited by its very nature to the discrete case. How-
ever, many continuous case problems are based on an ides very similar
1o that of cqually likely results. This is the idea of choosing a point
at random on a line interval. Just as with equally likely results, it is
useless to try to define this phrase in physical terms. The best we can
do is state the continuous case parallel to Definition 1.
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Definition 3. 1f a point is chosen at random on a line interval of
length A, the probability that it ig in a given subinterval of length «
isa/d.

It follows immediately from this that for a point chosen at random
on the interval from 0 to 4, the density function is equal to 0 oulside
the interval and 1/4 inside. Tor,if 0 < ¢ < A, by Definition 3

¢

thus the distribution function is @/4, and ifs derivative Is 1/4 . Ris
disposes of a simple, yot important, special case; but It hardly §ugzests
a general procedure for setting up the stochastie variable fopresenta-
tions in the continuous case. N

One such general procedure is suggested by the folloying ohservation:
L

t+dt N
prit <z <t+d = ﬁ Flarde,
a\J )
and this infegral is approximately equal to (gé)}it (approximately equal
b4

in the sense that the error is an infinitesiipnl of higher order than ).
So, if the physical setup led us to an qﬁpfoximation to the probabilivy
that ¢ < x <1+ dt, and if we gx?p’lféssed our approximation in the
form of a function of ¢ multiplied by df, then we might reasonably
expeet that this function woyuld gix-'e us the proper form for the density
function. Q

f we intend to usedhissuggestion, we should give some proof that
it gives a function f (;tt)\glat satisfies the conditions imposed in {a) and
() of Theorem T¥-ni that the application of Theorem IV yields prob-
abilities consistépt with those assumed in seiting up the funetion.
This is the 'tgp}"of proof we have decided to omit. For the benefit of
those familiar with a rigorous definition of the Riemann integral, we
mightszi;ad that Duhamel's theorem will do the job without too mueh
troyble. {See Frankiin, Trealise on Advanced Caleulus, New York
£1940), pages 266 to 269.]

Another procedure that frequently works is that used above in the
random point on a line problem. If we ean dig up any information
from the physical situation that will enable us to express pr lx <tlasa
function F(¢), then [by (d) of Theorem IV] the derivative of F gives us
the density function. Again, lct us give a formal summing up.

Theorem V (Working Rulé). In the continuous ease, to represent a
physical situation by a stochastic variable
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(2) Represent the set of all possible results in some orderly fashion
by some set of values for z.  The set of z values used may or may not
be the whole real number system.

(p) Dispose of any unused « values immediately by setting f(z) =
for these values.

Then, proceed to (¢) and (d) or to {¢') and (d).

{¢) For ¢ and { + df both lying in the set of & values that represent
results, figure out [rom the physical situation an approximation tg the
probability that 1 <z < ¢+ di. Fxpress the result in ihe* form
Flodi.

() Take the function f{!) from (¢); replace the £ by z; u&e‘the result-
ing function f(z) as a density function.

(¢") Tor ¢ in the set of z values that represent reaulf@ ﬁg:,uro out from
the physical situation the probability that & <Js\Express the result
in the form F(2).

(@) Take the function F(f) from (¢'); repla ae\the { by x; differentiate
with respect to . This derivative willhe the density functlon

With regard to the word “appmx;ifﬁation "in (), it should be added
that it must be an approximationdo? which the crror is an infinitesimal
of higher order than d¢, Ma-ny: first-year caleulus books give the sub-
ject of order of infinitesimalg eonly the “once over lightly’ trcatment;
so while this is a precise légeription of what is required, 1l might be of
more interest to the student to note that the choice of this approxima-
tion is governed by(the same rules as those which govern the choice of
approximationgigincrements of area, volume, work, ete., in setting up
definite integrals? In fact, steps (¢} and {d) are just another first-year
calculus (,\%r}nse in sctting up definite inlegrals.

13. E:fa:ﬂlple—Bombardment of Hemispherical Screen

o 111ustra‘r( step by step the use of Theorem V, lel us consider the
f\ﬂomng problem: A hemispherical screen is bombarded by a stream
of clectrons (see sketch). It is assumed that the radial distribution of

Electrons

Fig. 2.
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electrons is uniform and that all electrons congidered hit the screen.
Set up a density function that will determine probabilities as to the
colatitude ¢ of the point at which a given clectron, chosen at ranilom,
will hit. (a) For obvious reasons, we shall eall the stochastic variabla
@ in this case. Results will then be represented by the values of o
from 0 to #/2. (b} According to instructions, we set f(g) = 0 for
¢ < 0 and for ¢ > 7/2. (¢) The event { < ¢ < { -+ dt is equivalent
(sce sketch) to the event ihat the
radial distance falls in an interval of
length r; therefore its probabilifi i
r/R. Now, r = 8§ €08 1, anclag 33 up-
proximately 2 di;hence ?/R\EQ"&).@ Lelt.
(d) Replacing ¢ by ¢, ove’have the
density function f ()& Gos ¢

14, Example——’l‘h"é;.\ﬁadium Atom

To llustratc)the primed version of
"Theorem ¥, &% might try the problom
of thentaium atom, It has been
verificd experimentaily that the time
rate of decomposition of a quan’giﬁy: of radium is proportional to the
mass. 'That is, SN’

Fie. 3.

am
RNz
Furthermore, it is kne\\ﬁn' ¢hat the mass is halved in 1,580 years.  Thus,
if we have mass meat £ = 0, we have mass mo/2 at # = 1,580 Armed
with this informétion, we can find m in terms of &:
7

\M

= —km.

dm
m

C = —kdi
Integyfg‘b’i}g, we geb
Ny logm = —kt 4+ C.

2N\

\Er‘efn the condition m = mg at { = 0, we have

C = lﬂg .
¥rom the condition m = /2 at £ = 1,580, we have
_log 2
k=150

Thus,

= m_og—(log 2/1,58004
H

and the fraction of the original mass that disintegrates from time 0 to



smo. 15] MATHEMATICAL PROBABILITY 29

time £ is

Mo — M _ 1 - g—(1or 2/1,580)¢
My

Now, if this is what happens in the aggregate, we might take it as a
reasonable indication of the probability that a given atom will disin-
tegrate before time ¢,

S0, to follow through the steps in Theorem V, suppose wo are given
an stom of radium at time 0. {a) Let = stand for the time it disin-
tegrates. (b) We want only the positive half of the r axis; so wesct
fl&) = Oforz < 0. {¢") On the basis of the argument above, wg dgree
that ¢\

priz <} = 1 — g toe Y1508, ;'\ ’
(@) Substituting and differentiating, we get the dens::ty ftmci,lon

\

I =%(1 — et =ke—"f~"

where k = (log 2)/1,580. 7\

&

15, Synthesis of Discrete and Contmumis Cases

In succeeding chapters we ghall prow a number of theorems about
probabilities and related quantmcs Many of these proofs will be
based on the analytical represeiithtion of mathematical probability.
Unfortunately, however, we hiave two such representations, (¢} of
Theerem IT and (¢} of Thcwcm IV. There is no way of consolidating
the two for purposes f'\mal(mg direct computations. If we want to
find a specifie probablﬁy from » stochastic variable represcntation, in
the discrete cagewe must add. In the continuous case we must
integrate. H;Qﬂ dver, there is a thing called a Sticltjes integral which
has as spccial Ghses ordinary integrals, finite sums, and infinite series.
Ho the twc%} epresentations could be consolidated into a single formula
involving“a Stieltjes integral. This procedure would serve to unify
subse(}uen’r theoretical discussions but would have no effect whatever

a the nature of the computations involved in a specific problem.

We shall not attempt to use Stieltjes integrals in this course becausc
we want to stick to analytic forms that are familiar to the first-ycar
calculus student; so everything we discuss will eome in two cases.
Rather than give two proofs of each theorem, we shall usually present
the theory for the continuous case only. Of course, many of the exam-
ples and exercises will it the discrete case. Therefore, for everything
we do with integrals, the student might do well to run through an
analogous operation with sums. We have chosen to present our dis-
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cussion in terms of integrals for two reasons: first, many of the funda-
mental relationships stand ouf more dlearly when presented iu this
form; second, we want to accustom the student to thinking of proba-
bility as an integral because it appears in that form in advanced
treatises on the subjeet.

One thing we lose by not using Stieltjes integrals is the consideration

of the so-called mixed case. Suppose f(z) 2 0 ancd f_: Jlxyhe = L.

definc priE} as fE {(z)dz provided that E does not contain :y, aitdMet

Then, let us take some point o and set pric = x} = 3. Now, letus

piE} = 1% + fE f(z)dz if E contains z,. "This distribn.lt-:m\l'f‘fu\l'wiinn
clearly satisfies the axioms, but it is not deseribed by QLLhéi' a diserete
probability function or a density funetion. I-Iaving.fm(‘én’finnml this
possibility, we shall now proceed to ignore it. ’Illfa‘only satisfactory
deseription of all such cases (they can be muchadre complicated than
the above example) is a Lebesgue-Stieltjes .th’cgm.l. Y0 here is one
more way in which our treatment of propability theory—though repre-
sentative in at least a formal sense—3s definitely restricted in the mnter-
ests of mathematical simplicity. o\«

For the henefit of the student.wl‘g’o is interested in persuing this sub-
jet further, we might add thafthe chapters of Cramér’s book listed
below contain an excellent @isddssion of the Lobesgue-Stieltjes integral,
designed specifically as ia,rz\intr«:)ch,u:ti(:m to probability theory.

REFE%NCES FOR FURTHER STUDY

Coolidge, An I{L{‘rédiw&ion to Mathematical Probability, Oxford (1925),
Chap. L.

Cramér, Mathemalical Methods of Statistics, Princeton (1946), Chaps.
1-7533, 14,

Koln;gd’gomff | Foundations of the Theory of Probabilily, New York (1950).

ety and Roth, Elements of Probability, Chaps. [, IT, 1V, YI.

\%t}uik, “On the Foundstions of the Theory of Probability,” Philosophy
of Science (1934), vol. 1, pp. 50-70.

Uspensky, Iniroduction fo Mathematical Probability, New York (1937),
Introduction, Chaps. I, 1L, XTI, XIIT.

PROBLEMS

/1. What is the probability of throwing 8, 9, or 10 with 2 dice?

./ Ans. 4.
9. What is the probability of throwing 6 or less with 3 dice?

Ans. ?’51
3. A sct of pool balls (15 balls numbered 1 to 15) is placed in an urn,
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and 2 balls are drawn simultaneously. What is the probability that
the sum of their numbers is 10? Ans. #{os-
4. Tf, in Prob. 3, one ball is drawn and replaced and then the second
is drawn, what is the probability that the sum of the numbers is 107
Ans. 14y,
5. In Prob. 3, what is the probability that the product of the num-
bers is 107 What i the probability of this event in Prob. 47
Ans. 2{g3, %925
8. A roulette player places 3 bets on one spin of the wheel: 1 on
rows 4 and 5 (numbers 10 to 15), 1 on the first column, and 1 on, fod.
What is the probability that at least 1 of these will win? that thesfirst 2
mentioned will win? that all 3 will win? Ans. 285%,'%7, 0.
7. Tour tickets numbercd 1, 2, 3, 4 are placed in an urg and drawn
out one at a time (without replacements}. They are,jé’fi‘umbered in
the order in which they are drawn. What is the probability that all 4
numbers are changed? \Y; Ans. 3§,
8. Tind the probability of being dealt cach bi*the following poker
hands: 1 pair, 2 pairs, 3 of a kind, full hou {4 of a kind.
Ans. 352¢3y; 198/’4,16{»;':8§,,f’4,].65; 6/4,165; 1/4,165.
9. A poker hand confains 4 cards of duk suit and 1 odd card. If the
odd eard is discarded and 1 card draﬁaﬁjr%from the remainder of the deek,
what is the probability of fillingethe Aush—getting a fifth card of the
given suit? N\ Ans. %47.
10. A poker hand cont ‘4 cards in sequence (not A234 or JQKA)
and 1 odd card. 1f the ig-c}d card is discarded and 1 eard drawn from
the remainder of the déck, what is the probability of filling the straight?
(A struight is a 5-card sequence, not necessarily all of the same suit. )
P\ Ans. B4r.
11, What d8ythe probability of filling an “inside’ straight? The
hand éon 'ix\ré' 4 of a 5-card sequence with a gap in the middle (for
cxamg]e;'\:}aTS); the odd card is discarded and | card drawn from the
1‘emainrl"cr of the deck. Ans. %47
'"‘L;Zz ' A poker hand contains a 4-card sequence (as in Prob. 10) all in
he sume suit. If 1 eard is drawn, what is the probability of filling
gither the straight or the fiush? Ans. 1347,
13. T.et = represcnt the number of aces in a single 13-card bridge
hand. Find the probability funetion for the stochastic variable .
Ans, & 0 1 2 3 4
i B 41y 4 s G- LI B P (T,
flz): m T, 2, b2(7,, 92( 14
14. What is the probability that a bridge hand will contain no more
than 1 ace? Ans. 8349 - 9(C1s/%*Ca
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16. Two urns contain, respectively, 3 white, 5 red, 12 black balls
and 8 white, 3 red, 9 black balls. One ball is drawn from each urn,
Represent the 9 (ordered) color combinations by a stochastic variable,
and find its probability function. ‘

Ans. =z 1 2 3 4 5 6 7 8 9

f): 24500 oo 27400 *Yoo *Hioo *Xo0 98700 *340n *"¥400
Note: The student should indicate the significance of each vulie of 2.

16. From the results in Prob. 15, find the probability that neivther
ball was black; that they were not both black. Ans. 114y, T3{40.

17. Three balls numbered 1, 2, 3 arc placed in an urn. A Wl s
drawn and replaced; then another ball is drawn. Tet the shouhastic
variable  represent the sum of the 2 numbers drawn, 1"i1'§d\’i.h~c\proba—
bility function for . Ans. z: 2 3 M o 6

ORI S AT

18. Suppose the second drawing is made \\-'ithL&J{v’l‘f&])h‘tcillg the st

ball. Find the probability function for the sumi St the numbers drawn.
s, z: 3 1 b
O fmy: 14 M &

19. From this same urn the balls aredtasn as in Prob. 17. Yiud the
probability function for the product.'o:fuf.he numbers drawn.

A 2z 1 02 3 4 69
oS s 4% 2 6 3 M

920. Find the probability function for the product of the numbers
drawn when the drawinggare made as in Prob, 18,

p \" Ans, z 2 3 6
® J@: % M

21. An urn contains 10 white balls and 10 black balls. Five balls
are drawn simfitancously. Find the probability funetion for the num-
ber of whitgb.ills dravwn,

VAL 1 2 3 4 5
g 22 210 540 5400 20 22
o) * {5504 15,504 15,504 15,304 15,504 15,502

35 The stochastic variable @ can assume the values 0, 1,2, . . . , 7
with pr{z = #] proportional to *C.. Find the probability function
for .- Hint: Axiom B must be satisfied. Ans.  flz) = »C/2"

23. The stochastic variable z can assume the values 0, 1, 2, 3. .
with priz = r} proportional to o'/7l. Find the probabiliby function
for =. Ans. f(z) = aze*/z] (Poisson’s distribution).

94. The stochastic variable z can assume the values 1,2, .. ., %
with pr{z = r} proportional tor. Tind the probability function for .

Ans. f@) = 2z/n{n -+ 1)-

oy
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25, A radio station broadeasts the correet time every hour on the
hour. What is the probability that a listener tuning in at random will
have to wait less than 10 minutes to get the correct time?  Ans. 14,

26. A point is chosen at random on a line segment, dividing it into 2
scgments. Tind the probability that the ratio of the length of the
lefi-hand gegment to that of the right-hand one is less than a given
number c. Ans. o/l + ).

27. In Prob. 26, what is the probability that the ratio of the length
of 1he right-hand segment to that of the left-hand one is Jess than «?

Ans.  a/(1 4.
28. In Prob. 26, what is the probability that the length of the shorter
segment to that of the longer one is less than 347 Ans\ 14,

29, Given an atom of radium at the beginning of a leap y(,ar, find the
probability that it will disintegrate during a leap _-y(,ar (Lf se a Julian
calendar—-every fourth year a leap year.)

Ans. (1 — e*)/(1 — ey fu\ (log 2)/1,580.

30, A point is chosen at random on a semicirgle #nd projected onto
the diameter. Tind the density function fo,rxl‘}:re point of projection.

Ans. f2) = U/x /T — 2% for —1 <§s < 1, f(®) = 0 otherwise.

31. Anangle #is chosen at random bétween ~7rX2 and 7/2 and a line
is drawn through the point (0,1) at the angle # with the ¥ axis. ¥ind
the density function for the po,mﬁ z at which this line crosses the
2 axis, Ans. f(z).= l/m-(l + z2) {Cauchy’s distribution).

32, A number is chosen gt random betwecn 0 and 1. What is the
probability that its first deéeimal place is a 77 that its second decimal
place is a 77 that the th place is a. 7? Ans.  1{p in each ease.

33. A pumber ig'shosen at random between O and 1. What is the
probability thag {#y first 2 decimal places are 7's? that any 2 specified
decimal I)Iac(,s\are 7'a? Ans. 140 1n each casec.

4. A Ixmber is ehosen at random between 0 and 1. What is the
probablhm that it has a 7 in cach of k specified decimal places?

Ans. 1/108.
Mfe\ Problums 33 and 34 should be solved directly from Definition
& 'See comment, Prob. 33, Chap. 3.

35. A number is chosen at random between 0 and 1. Let . be the
nth decimal place. Find the probability function for za.

Ans. flea) = ¥Mo32a=0,1,2, ..., &

36. Prove Theorem I, using only the axioms. Outline: (a) follows
from Axioms B and C; (b) follows from {(a) and Axiom B; (¢) follows
from (¢} and Axiom A () follows from Axioms 4 and C; () may be
proved by induction, using Axiom C and (@).



CHAPTER 3
JOINT DISTRIBUTIONS

In the previous chapter we discussed the represeniation of a situation
by a single stochastic variable. Such a representation amounts to
lining the possible events up in a row and assigning abscissas to them
(and then, of course, eomputing a suitable density funciion}.  Naw,
there are situations in which such a linear array of the possihl€ dy'ents
does not adequately describe all the similarities and i11t01-1-t:}‘;t~t'ir.aiuihips
among them, Ior instance, in the throwing of 2 dice, z\zéﬁ‘piighi; want
to list as the set of possible events the set of all orderadspaird of numbers
that might show up. These could be laid out in fm‘}»&' andd numbered
in some orderly fashion, but such a set of evends 14 just erying 1o be
arranged in a § X 6 square array. Perha[{s:ﬁﬁ% point s even hetter
Mustrated by Prob. 15, Chap. 2. There pueli cvent eonssts of aopair
of colors {9 such pairs in all). These, thoy could be laid out in o row
and numbered {and that is what we gligeested In the answer we Eavel,
but is it not mueh more natural g ;i]zi"'angc these pairs In a3 X & square
array? If we had 3 urns contaifing 3 colors cach, we should be led 1n
the same manner to a 3 X 8\X 3 cubical arrangement.

Granted, then, that thete are situations for which sets of points n
two or more dimensi@’}z;ive betler tepresentations than linear sets.
We shall take the hiht and develop a theory of two or more stochastie
variables. Ong,tﬁirfg we might note to begin with is that, when we t5e
& multidimensional representation of a pliysical situation, we deseribe
each basig*:&ﬁlt (point) in the space as a logical produet of two or more
events. { 1at is, if 4 is the event © = zo and B is the event ¥ = ¥,
then.fhe point (zo,%0) is the event AR. We shall frequently refer to
anh\product events as compound events. The individual events of
Which a compound event is the product we shall call its component
events. We might add that “ecompoundness™ is not an intrinsic prop-
erty of physical events.  We use the phrage only to distinguish certain
events in a physieal situation for which a multidimensional event space
seems fo be the natural representation.

16. Joint Density Functions

In the interest of making ideas clearcr by keeping the notation
gimpler, we shall confinc most of our discussion in this chapter to the
34
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two-dimensional case—i.e., the case in which each ecompound event has
two components. The student who eonquers this two-dimensional
discussion should have no trouble in following through all the steps for
as many variables as he pleases.

Supposc the event space S is u two-dimensional sct.  Events will be
messurable subsets of 8, and the axioms will be expected to apply
vorbatim. To get a stochastic variable representation, let « and y be
rectangular coordinates in the plane in which 8 lies. Then, & and ¥
are functions of 1he points of S, so each i8 a stochastic variable (Defi-
nition 2, Chap. 2). To describe the distribution function pr{E Nin
jerms of a funelion (z,¥), let us note that a double integral Df\go\stlfl:a-
fies lhe addition principle. Therefore, all we need is a pﬂd\l\(lf condi-
tions on e(x,y) to guarantee the satisfaction of Axlqms A and B.

Obviously, these are ¢(z,y) > 0, and f f olx, y)d'v é’y =1, Bucha

funclion ¢(z,y) we shall eall a joint densify fwnctwn The distribution
fanetion pr{E} that it generates we shall ca&l vthe josnt distribution
function for x and y.

This gives us the first half of a theorer\n similar to Theorem IV,
Chap. 2. The second half [a formula for the joint density funection
¢(z,y) in terms of the distribution f wdttion pr{E}] is obtained by noting
that the inverse opcrator to a douhie integral is a cross partial deriva-
tive. That is, if

‘I’(u,fj)mf" f_”m f_ux o(z,y)dz dy,
L\ 3%
NS e = o

then

One more rel ark is called for before we give a formal statement of
these resulis & We can alw ays speak of (x,y) as being defined over the
entire \plane If 8 ijs not the whole plane, we seb w(zy) =0
out‘-,ld(‘ fS

\Iheorem I. If o(x,y) is a function defined over the entire ¢y plane
afd if

{a) olwy) > 0 for every 2, ¥,
® [o ] ewadndy =1,

then o(z,y) iz a joint density function, and = and y are stochastic varia-
bles with a joint distribution function given by the formula

() priB} = f fﬂ o{zy)de dy.
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{n particular, e
@  prie<s<vande<y<d = [ [Tolnds dy

Conversely, if z and y are stochastic variables with a joint distribubion
function priE} and if ®(u,p) = priz <uwandy < v} is an indefinive
double integral, then a joint density function o(z,1) 18 given by the
formula

(e) @(I,y) =

Many times, in what follows, we shall have oceasion to reverse ‘.;1;5
order of integration in a double integral, We shall do this avibhoub
calling any particular attention to it. A word should pc;.;m.ad' here
about the justification for this procedure, particularly sifde we wie so
often dealing with improper integrals. The standard ’(thm‘em on ibis
is that the order of integration may be reversed if I;I*Ie;\int-egt'a.l ig abzo-
lutely convergent (see Yranklin, T'reatise on Adetarced Calewlus, page
308.) Now (a) of Theorem 1 means that any #onivergence of inlegrals
of ¢ is ahsolute convergence, and (b) says“(hfriong olher things) thatb
all integrals of ¢ are convergent. So, a8 fohg as ¢ is our only inlegrand,
we may change the order of integrationiat will. Later on (Chap. §) we
shall have other integrands to degl;%ﬁth, but we shall make our defi-
nitions in such a way that absefiite convergence is still guaranteed,

As we noted at the end of €hap. 2, we shall develop the theory
terms of the confinuous cdSe? However, we might do well to state the
discrete casc parallel ’t'b\’I‘ﬁcorem I

Theorem IL JIF E,r;(:t:,y) is » function defined over a discrete sot S
of points In !@1;1{3\7:“9! plane and if

(m) ‘.§ v oz} 7 O for every poinb (,y) in S,
» :.’ -l
O X 2 Y elay) =1,

) {z,y} in 8

then ¢(z,3) is a joint probability function, and = and ¥ are stochastic
variables with a joint distribution function given by the formula

© priB} = (Zw Zb (3.

In particular,

(d) priz = zoand ¥ = yo} = ¢(z0Yo).
Conversely, if z and y are discrete stochastic variables with a joint dis-
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tribution function priE}, then a joint probability function ¢(z,y) is
given by (d).

17, Marginal Distributions

Wo now raise the question whether stochastic variables deseribed by

a joint density function have their own density functions as in Theorem
TV, Chap. 2. This is, indeed, the case; and these individual density
functions are determined by the joint density {funection. Note thaf
ihe single pair of incqualities ¢ < & < b describes an entire vertical
strip in the zy planc; so ' A~

B b b « N
mria <z < b} = f_ m fa elzy)de dy = L f_ , plxy)dy de )
By
=, f a)de,
where O

f@ = [ otemay. L0

It is now easily scen that f(z) will serve as a depsiby function for the
stochagtic variable z. (Sct @ = ¢, b = ¢ 4 di/and apply Theorem V,
Chayp. 2.) Similarly, we may obtain the derélty function

g(w) = f _:ﬂ@)éi&

These individua! density fumzfsidﬁs f(z) and gy} are called the
marginel densify functions, and {he distribution functions they generate
by means of (¢} of Theorem(RV, Chap. 2, arc called the marginal dis-
{ributions. This terminolégy probably comes from the fact that in the
finite casc a convenient way of describing ¢(z,y) 18 to write its values
out in a square arzay.” Then, f(x) and g(y) are given by adding the
columns and rowd)réspectively; and the values of these functions are
very conveni.egﬂy" listed around the margins of the squave array.

Tt should\Weemphasized that any discussion of two stochastic varis-
blez is bagg primarily on the joint density function and not on the
margingh density functions. While we have just scen that the joint
de ﬁ?ﬂ,j* Tunction determines the marginal ones, the reverse is not true
atall.  Ttis very casy to find two fundamentally different joint density
funetions each of which gives rise to the same pair of marginal density
functions. Consider, for instance,

R for0 <z <land0 <y <1,
ealay) = {0 otherwise;

44+ +y) for0<z<land0<Ly <],
exly) = 0 otherwise.
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The equation (14 + @) (L +y) =x+¥ has for its only roots & = 34,
y = 14; thus, inside the unit square, ¢1(2,¥) = ¢o{x,y) only ulong two
lines. However, cach will pass as & joint density function, and each
leads to the same pair of marginal density functions:

1l

fim) = [ ety = ) @y =24 b

fa(z) = f_mm ox(my)dy = fol' (Y 4+ 2)(34 + 9)dy = M4k &
guly) = f_: e y)dr = fol (v + y)de = 15 + ¥ ~
) = [ oo = [[ 05+ D08+ udde =8 5

18. Example—Two Dice AN by

As for representing physical situations by pairs of Fhochastic varia-
bles, the procedure 1s roughly the same as that out’ﬁhnd in Chap. 2 for
getting one-variable representations.  The genefal principle i that, if
we know the probabilities of all the events irix-\}]'vcd, the density fune-
tion i¢ arrived at in the usual manner. f_ﬁhé' only renl question then
concerns finding the probability of a Qnif;p'ound pvent,  Now, In many
cases this can be done by inspection ot by a direct application of
Definition 1, Chap. 2, to the corqﬁgﬁﬁd events themselves,  The prob-
lem of the two dice 1s one thatsgin be done by inspection.  Let us leuk
ab it by way of Mustrationob the ideas presented so far.

We think of each resukﬁ"@f ihrowing 2 dice as o compound event eom-
posed of 1 result on (ﬁxb&ie and 1 on the other.  Now, let & represent
the result on one dié #nd ¢ the result on the other. ThercarcGp ossible
resulls on eachidie’ so we give © the values 1, 2, . . ., 6 and do ihe
same for y, FHis gives us 36 points in the xy plane, cach of which
reprcsentt%l' of our compound events, Now (and this js whal we
meant b% oing it by inspection), these compound events seem cqually
likt:zlg;.%s'o we give them each a weight of J4s. That is, wesel o(z.y) = L3

{6‘13 each of the 36 points at which it is to be delined.

Tn thig, as in any other finite cage, an integral from — = to = is
replaced by a finite sum (for this pariicular situation, a sum of & terms).
A double integral over an area will con aigt of the sum of all ¢ values for
points found in that area. Bearing these points in mind, we might
carry out a few of the operations on joint dengity funetions already
discussed. The accompanying chart shows the values of e(xy) ab
appropriate places in the plane. The rows and columns are added to
give the marginal probability functions. Finally, the values of © and
y are listed around the outside.
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R I I ST
" =
XXX XXEE

Fra. 4. Y \
To apply (¢} of Theorem II, we could write , \‘ :
AN
4 5 Q)
pri3 <o <4and4<y<sl= ) ) olay) = 45 =%
=3 y=,4*:\ g

{aren outlined by dotted line}. Hox-'.-'eve.n,"ﬁaz house pays off on the
sum of @ and y; hence the events we are‘most interested in are those
represented by the areas befween diepé'dnal lines. To compute these,
the formality of a double sum is gﬂ&t’ily laborious; so we dispense with
it and merely add down the diggoh’al strips to get the usual table:

sty 2 3 4 ANe 7 8 9 10 11 12
pri s 24s %é\\%ﬁ 56 %6 %6 %46 %86 286 1Be
It appears from this ¥hat the stochastic variable we used to describe
the two dice in Ch#p. 2 is the sum of the two variables we are using
here. This iz ¢Pvore than just passing interest. In later chapiers we
shall have duité a lot to say sbout sums of stochastic variables, and the
student Wi%s\want o learn what is meant by such a sum and what
sigxﬁﬁp@ﬁe can be attached to it. These questions are discusscd ab
soit\lenrth in Chap. 5, but the example given here might serve as a
star ifng point for the student’s thinking on the subject.

19. Conditional Probabilities

In setting up the joint probability function in the preceding example,
we took s quick look at the compound cvents and decided on their
probabilities directly. Now, in many situations this is not feasible; so
we turn our attention to the problem of working up from an analysis of
the component cvents to & determination of probabilities for the com-
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pound events. As we noted above, a knowledge of the marginal
density functions will not suffice, because these do not determine the
joint density function uniquely; and two stochastic variables are not
adequately deseribed unless the joint density Tunction is given.

S0 we need a new idea; and this idea turns out to be that of condi-
tional probabilsty. ‘This notion is described by the following problem:
Given ¢ <z € b, what is the probability that ¢ <y < Jd? The
answer will be found in the usual manner [from (d) of Theorem 1] once
we obtain & new joint density function ¢(x,y) which describes our
hypotheses. Since all events for which © <a or 2 >t ard {0  be
ruled out, we set ¥(x,y) = 0 over these portions of the &, plane.
Tn the strip ¢ < « < b we want @ and » related ag befovegwo’we set
Ylx,y) = kelz,y) over this strip. Now, s dct-crmi11(3(‘.1’.,11?;’ 3001 88 We
find the constant k. Noting that we must have N\

P
.

- - = 3 ."’.\
f_ . f_ _Yyde dy = f_ o Ja Kpz,y)de dy
=k [" 7, olewdy de = b {0z,
it appears that O

1l

1

o

ROy (O

Now, using (d) of Thqug{i;{ I, we have that, given e < 2 < b,

prie é\?ﬁ d} = L i f_: Pz y)dx dy
AT

‘%"\ 0 ) -.fff_(a:}d:v

T‘hg.egépression in brackets will be called the eonditional denstly function
for Pt
3

dy.

fb @(x,'y)dit
Gap(y) = T
[T

The conditional probabilities we mentioned will then be given by
integrals of this conditional density function. Qur notation for condi-
tional probabilities will have the condition deseribed in a subseript;

thus the probability that ¢ < y < d, given that a < z < b, would be
written

.

p?‘agzsb{c <y <dl.
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To save ink, we shall frequently abbreviate this to

propie <y < di.
In this notation,

T rd
prapic <y <d} = fc Fep(y)dy.

The other set of conditional probabilities (probabilities for x, given
information about y) are defined in a similar manner. Let us collect
these notions and state them formally as follows:

N\
Definition 1. Let o(z,y) be the joint density function for a painof
stoehastic variables x and y, and let (N
A\

fo) = [ ey and g) = [, oleiids

be the corresponding marginal density functions.'mjﬂ‘.;ﬁen the condi-
tional density functions are defined as ’

[ ety Y ot

T g
[ oty

() Jealx) = a,:3@}.’= fbf( Y
K x

Clonditional probabilities for z and: ¥ are defined by

Is [ " N\
®) prosfa <z < b} = [ fealb)dz,
d

O praple Sy < dj = ]; Gas(y)dY-
O

In the discrete .caée, probabilities of single values for x and ¥ are
ditferent from zeres and the usual form for conditional probabilities
is sufﬁcienﬂ}('glifferent to be worth mentioning. Note that, with the
usual t-rarmposition of integrals into sums, Definition 1 describes the
discretg'.ﬁ’ﬁﬁjation t0o. The following is merely an important special

CABEFS
m\./

\l‘ileorem IT. Let o{z,y) be the joint probability function for & pair
of stochastic variables « and ¥, defined over a discrete set, and let

i) = Y oley)  wnd o) = Y ey
# T
be the corresponding marginal probability functions. Thexn, condi-
tional probability functions are given by

ACAT; _ P{wol)
({I) fﬂn(m) = Q‘(yo) ? gwa(y) f(Ie)
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Conditional probabilitics are given by

_ . _ (,a(z.s,?jn}
(b) (P?'v==w{$ = Ig} - IUO(:BO) J(J )
Plecwtll = o) = Gnlyn} = QEE;%”)

For another very useful deseription of conditional prohability in the
finite case, see Theorem V below.
O\
20. The Multiplication Theorem

Tefinition 1 shows clearly that, if the joint density funet ‘“Q 14}rn(n
the conditional probabilities are dott rmined.  The intere w1z thing is
that we can go the other way. I the marginal densit® Tinetions and
all the conditional probubilities are known, the _my{\t\l( nsity function
can be found. To sce how this is accomplishud, wouiced Lo look wt the
multiplication theorem. A)

Theorem IV. ) ‘\
pridB} = pr{x‘l}p-r,;j‘f?{} = priBlprald].

Note that AR and BA are t.lﬁ)’.ﬁame event, represented by the =ame
arca in the zy plane.  Thus{the proof of one of these equalitics proves
the other by an 1ntmchat%e of symbols. As noted in Chap. 2, we
shall agsume (in orde r\bstm on the level of clementary ealeulus) that
the component evefits can be represented by intervals on the z and ¥
axes. Let A hotidevent a <2 < b, andlet Bhee <y < d. Then
the proof of 'Ifheorem 1V is a simple computation:

'\\" “ft (zy)dx
\m 45‘ f f eley)de dy = f Flx)dx c %;(j;dy

= [P1@ds [ gasiay = pridipraB).

Tf 4 is itself a compound cvent 4,4, then Theorem IV can be
applied twice to give

?’?{AlAzB} = pT{AIAz}P?‘AMg{B} = PT{ }pmi{A }p?‘.dmg{B}

Continuing in the same manner, we get a general multiplication
principle:
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Corollary 1.

priByEs - -+ Eu) = priEdprad Eelpres | £l
s preE ... En—l{Eﬁ}l

The multiplication theorem tells us that conditional probabilitics
are deseribed by the equation
_ pridBj
(1 P""A{B} pr{.’l}

Supposc we have a physical situation in which there are n equadlly
likely results; suppose the event A 1s a set of r of these and " of\these
r resulte are also contained in the event B. Then the event A\Bis} Just
these 1 results; so by Definition 1, Chap. 2, DA

r ¢
pridi = - R
’ \J
pridBl =5 N\
and Equation (1) tells us that O
ral B} = AN )
Pra BREZASY,

To give a formal statement:

fl

*»

Theorem V. Suppose the eviajit-é A and B are scts of equally likely
resulls of an experiment. JMNA is a set of ¢ such regulis and if " of
these r rosults are also qqntﬁined in B, then pra{B} = r'/r.

A
21. Bayes’ Theorenh N\

Conditional préBabilities in general are deseribed by Equation (1),
Sec. 20; andgﬁr@blemg involving conditional probabilities can fre-
quently be @olved by the direet application of this equation. How-
ever, thal’&ig an interesting special case, known as Dayes’ theorem,
that jsji’ort-h taking a look at.

o&iﬁpose we have u gituation in which an event A ean oceur only in
c}mj‘un ction with one of the mutually exclusive events By, By, . - ., B,.
Symbolically, we write this

A= AB;.

2
For a physical picture, think of the events By, Bs, . . ., Baasthe set
of all possible causes and of A as the result. Suppose, further, that
the conditional probabilities prs;{4} are known. We should like to
find the reverse conditional probuabilities pra{Bi}.
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If we think of the events B; as hypotheses or causes and of A aga
final result, pralB;} is interpreted as follows: If we know that the
result is A, what is the probability that the cause of 16 waz ;7 Tor
this reason the probabilities given by Bayes' theorem are called a
posteriori probabilitics—the idea being that the probability of o possi-
ble cause is computed after the result has transpired. The sludent
should note that this name is given o the conditional probability
praiB;} only because of the applications usually made of this theoren.
Fundamentally, it is just another conditional probability; and wy the
student can see by locking at () of Definition 1, there 1s no cxsgntial
distinetion between the two ideas of conditional probability, Oy

Noting that the compound events AB; and B;A are the@hme thing,
and applying Theorem IV, we have \*

0” 3
<

pridlpra(B) = priAB} = priBiA} = pr{Bipraidl.
Solving this for pra{B:}, we have \ .

O

praiBi} = ’p?’{B,-}_prN.{l }

o

From the assumptions that A =ﬁfAB1 and that the events f3; are
mutually exclusive, we have, bys8xiom C and Theorem TV, that

N n
prid= ) r(Blprafal.
\\ Nos i=1
Bubstituting, we ‘airri\re at the formula usually known as Bayes’
theorem: 2N/

(1 \:\“ ‘p?'A{Bi} = ??T{B«;}}O?‘B\-{A}
‘§ z priBitprs {4}

N

AN
}’ Before getting wild ideas about what Bayes’ theorem can do for us,
é should look carefully at the right-hand side of (1). The important
thing we see there is that, in order to compute pra{B:}, we have 1o
know all the a priori probabilities pr{B;}. For instance, we might
ask the question: “Knowing that a sample came from one of a given
set, of populations, can we tell by looking at the sample the probability
that it came from a eertain one?” Let us note that before we can use
Bayes' theorem to answer this, we must first answer the question:
¢ Can we tell without looking at the sample the probability that it came
from a certain population?” In many cases infelligent agsumptions
a8 to the a priori probabilities can be made, but we should note that we
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do not get something for nothing here. We gtill have to start with an
assumption, and all our resulis are based on that assumption.

29. Construction of Joint Density Functions

"[he notion of conditional probability furnishes us with the necessary
tools for the construetion of joint densily functions to represent given
physical situations.

Theorem VI (Working Eule). i a situation involves events each of
which is to be regarded as the product of Lwo events, then to geta
stochastic variable representation: oA\

PR,

(a) Classify the component events into two classes JQ‘aJ,\d Y such
that every compound event involved is the product @fyoné event of
¢lass X and one of class Y. ."‘.,\\

(b) Represent the events of clags X by a single stochastic variable
z, and find the density function (or pro}ggﬂﬁﬁty function). Use
Theorem 111 or V, Chap. 2, whichever applies.”

{¢) Associate the events of clags ¥ if\gome natural manner with
values of a variable y. N

(d) Discrete Case. For each valug %, of , get priz = xq} from the
probability function in (b). Theﬁ,’for each value 4o of y, figure out
from the physical situation/gresly = yo). Put these results into
Theorem IV, and get p’.-“{:gw%s %5 and § = yoi. Use thisas the value of
¢ (w0, o) L

(@) Continuous Gose. For each value zo of z, set up the usual
approximation pal@y X & < Zo + dz} = flwo)dw from the density func-
tion in (b). Th{an’, for each value yo of ¥, figure out from the physical
situation thetigval type of approximadion to the conditional probability
Py <o <ocktolto S 4 < Ho T dy}. Usc these results and Theorem TV to
get an dpploximation to prize <z < @ + deand yo <y <o+ dyi-
Fxpgega. this ﬁn_zﬂ result in the form ¢(xoy0)ds d¥, and this gives the
£orod of the joint density funetion ¢

We omit all proof that this rule does what it is advertised as doing.
In the disercte case this follows at once from (d) of Theorem II. In
the continuous case we meet with the same difficulties that caused us
to skip the proof of Theorem V, Chap. 2.

In Step {(a) the question of which set of component events to eall X
and which to call ¥ is decided by looking ahead to (d} or (d) and secing
which set of conditional probabilities can be computed readily. After
a little experience the student will find that in some cases it makes 1o
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difference, while in others the problem is casy one way but praciically
impossible the other.

Yor many situations Theorem VI is unneeessarily complicated, and
we do not want te be quoted as recommending an unduly Liborious
preseniation for every problem the student works.  We have merely
tried to give full and cxplicit instructions for the henefit of anyone who
is having trouble. Here is a short summary of thig working rule that
may prove more useful than the formal rule itscli. T a set of evenls
can be arranged naturally in a two-dimensional array, arrange them
that way and assign abscissas and ordinates.  The joink probrbility
function will be given in the diserete case by the probubilitieg oltthe
various points in the aray. The form of the joint density Latpeiion
will be indicated in the continuous cuse by the probabilitf o n repre-
sentative square dr by dy. Compute these probabilitigh¥y any means
that come to hand. Theorem 1V will frequentlyy Lo of use in this
connection. )

93. Independent Stochastic Variables 7\

Before turning to specific examples, w&should introduce the notion
of independent stochastic variables. A 'cbrhmon—sense definition of this
notion would be that z and y are independent if probabilitics for y do
not depend on values of . Stzitérl in terms of the notulion we are
using in this chapter, this woukl mean that g.s{y) docs not depend on
qorb. If this is the cascgdye gob the same result for every @ and b; s0
setting ¢ = —, b ;.\a{,x ve have

:7: elxy)ds f_: ol y)de
gu.'bf\.’)o }= P = —
N _L fw)dz f_mf(:tz)d;c
:"\§¢
for e"ﬁ‘gﬁbﬂ? b. Thus for independent variables

_ 0W)
1

T
e

[ elwapds = q) [ f)dz;

\ s

ahd, integrating with respect to y, we have

fcd Lﬁ ela,y)de dy = fcd glndy Lb fla)dz,

which means Theorem TV will read priAB} = pr{dipr{B}. Further-
more, since the above must hold for every a, b, ¢, 4, it, follows that
ozy) = fx)g@@). This is another of those things which we have no
intention of tryving to prove in an elementary course, but we can gener-
ate a strong suspicion that it would be the case by letting a = %o,
b =2y 4 da, ¢ = Yo, and & = yo + dy:
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zotdz [futdy xn+4dz o4 dy
[ [ ptapdy d = [ s [ 0ty

+
Now, we malke our usual approximation and have

elooyndy da = flzo)dz glyo)dy;

and, dividing by dy dz, we get oleoyo) = flzayglye). Tt is the use of
the approximation that keeps this argument from being rigorous. For
the benefit of those who are intercsted, we might add that a genuine
proof would consist in applying the first mean value theorem for inte-
grals (Franklin, Treclise on Advaneced Caleulus, page 201) to get the\
result in case the funetions are continuous and then noting that jnte-
grability will require gontinuity at so many points that we can ,(\:ﬁhﬁge
things to make the result hold everywhere without altering the value
of any integrals. N

Finally, Jet us note that it is trivial to go buck frq +this last result
to our starling point; i.e., if e(zy) = f (x)g(y), then geky) Is independent
of ¢ and b; for, in this case, N\

b b o‘i\\'b
[ otwmde [ s@gtds gl [ S

A gimilar cirele of implications couldbe given, starting with the propo-
sition that fo 4(z) is independent of'v'and d. Thus webave four equiva-
lont statements which we use tellefine independent stochastic variables.
g ii 3
Defingtion 2. The stoehastic variables x and ¥ are said to be inde-
pendent if the followingy four equivalent conditions hold:

Jany) = g(y)-

(o) Ke “han(y) = gly) for every a, b.
(B '..\’;,\" foal) = f(z) for every ¢, d.
{e) prie Q‘p/ﬁ bande <y £d}
‘ =prla <z <bipric <y = d} for every ¢, b, ¢, d.
@ A o(z,y) = [@)g(y) for every @, ¥.

‘T'gr practical purposes, note that this equivalence means that to
prove z and y are independent we need prove only that some one of
these conditions holds, while if = and y are known to be independent,
then it follows that all four conditions hold.

The phrase “independent events’ is frequently used in probability
theory. We shall say that two events arc independent if they can be
described, one by a set of x values and the other by a set of y values,
where ¢ and y are independent stochastic variables. Conditions (a},
(b), and () of Definition 2 then translate immediately:
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Theorem VIL. For independent cvents A and B,

(a) pra{B} = priB}.
(b) p?‘;;{:‘.} = ;DT{A}.
(©) ' priAB} = pridipr{B}.

TFurthermore, any onc of these conditions will guarantee that 4 and B
arc independent.

Generalizing condition (d) of Definition 2 for independent stockastie
variables, we say that n stochastic variables are independent ¥ {heir
joint density function is the product of » functions ench dependisty on
only 1 of the variables. If n variables arc independent, a2 oy them
are; but the converse is not true. Consider 3 variables z,g/dnd 2, each
of which assumes the valucs 0 and 1. The joint protabillity funetion
®(z,y,2) must then be defined at each corner of thg&ﬁi't cube; let it he
defired by the numbers at the corners of the cubovin this diagram:

F4 , \ \
A0

Ve

£
7

4 X g
)
!
~ i
\‘ 4 4
O
N \
O 2]
AN b3
,\ X
\‘ Tre. 5

Now, ’go'\\géi o(z,y), we add along each line paraliel to the z axis and
discoder that ¢(z,y) is 14 at each of its 4 points. Similarly, adding
w‘iiih\’respect to y and z, respectively, we find that 8(z,z) and ¢(y,2} are
¢h identically 1. From these squares with }4 at each corner, it is
easy to see that another round of adding gives f (z) = 14 at each of its
two points and the same for 4(y) and R(z). When we try to build back
up by multiplication, we see that f(z)g(y) = 14 X 14 = Y = o(zy)
for cach of the 4 pairs of values of x and . Similarly, 8(z,z) = flz)h(2)
at all 4 points in the zz plane, and Y(y,2) = g(y)h{z) at all 4 points.
However, J(x)g(y)h(z) is identically equal to 14, and ®(zy,2) is not
equal to 14 anywhere. Thus, x and y are independent; z and ¢ are
independent; y and # arc independent; but x, ¥, and 2z are not.
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24, Joint Density Functions—Independent Case

T, in setting up a two-dimensional stochastic variable representation
of o situation, we find that the events we have represented by y values
are independent of those represented by x values (and the physical
situation will usually show very clearly that this is or is not the case),
then we shall want to make z and ¥ independent stochastic variables;
and the probiem of setting up the joint density function 1s considerably
simplified. Technically, Theorem V1 still applies; but practically it is
2y too complicated. In its place we suggest the following: ,

Theorem VIIL (Special Working Rule). Follow through steps (&) »),
and {e) of Theorem VI; then, if z and y appear to be independeﬁt, set
up ¢(y) by means of Theorem IIT or V, Chap. 2 (\-vhi(:hqxzér’@pplies},
raultiply by the f(®) obtained in (b) of Theorem V];{gind use this
preduct for e(z,y). )

Tt is worth noting that, if x and y are ind&g‘é&ént and each has a
constant density function, then ol(z,3) willihé gonstant also. The con-
tinnons casc 1s particularly worth studyingainder these cireumstances.
1f ¢ is constant, then olzy) = 1/4, \.ﬁf}’)jére A is the total srea covered
by all possible results. With go(:p;yéf jdentically 1/4, the integral of
& over any area A’ inside this_jnst gives A’/A. These observations
suggest the following: 4

) i‘\

Theorem IX (Very Sg:%?ial Working Rule). In the continuous case,
for two independent-spothastic variables, each with a constant density
{unction, the pl-obéBiht.y of an event described by pairs of values of
and ¥ is givendy ‘he area representing the tavorable cases divided by
the arca l-qﬁésénting all possible cases.

Mafiy problems fall under this rule, and for these problems the solu-
fiohd certainly very simple. Care must be taken, however, not to use
Theorem 1X where it does not apply; and the most likely source of
troable is that = and y can have constant density functions and still not
come under Theorem IX. Independence must be checked in addition
¢ this. Consider, for example, a joint density function

1 ) .

S ; forQ <z <2 and 0 <y < 2r

ol = | 3r2 {1 — sin z s i) rQ < 2 Y ’
0 otherwise.
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Obvlously, probabilities are not proportional to areas in this case; yeb
the marginal density functions are both constant,

26. Example—Three Urns

Suppose we have three urns contuining balls as follows:

Urn I; 3 white, 2 black
Urn 11: 4 white, 7 black
Trn T1L: 5 white, 4 black A

Our proeedure will be to choose an urn at random and thépdraw a
ball fromit. ‘Two specifie uestions that might he roised Aoy () What
is the probability that the ball drawn is white?  (0) Gipel 1har the ball
drawn is white, what is the probability that the 111‘n'§hu.~5én wos urn 17
Finally, we might set up a complete mprescnt.uti(m:})f this zituation by
two stochastic variables, \ '

To answer question {a), we note that a \-;}ih}s’lm!l cun be oliained in
any onc of three mutually exclusive \\'a.ys;\ -

N./

TUrn 1, white hall R ;{;
TUrn II, whitc ball .'.}.7;
Urn I11, whitc ball Ny

Each of these is & c,@ﬁ}}:ound event, but their probabilitics can be
computed {rom Theotem [V because the conditional probability for a
color, given the u}fril;numbcr, is obvious. 8o we have

Qr{‘lﬁ,?ﬂ = prillprnfw} = 14 X 32 = 1g.
cH{ILu} = pr{llipratue} = 24 X 91 = 36s
ASprTLw) = prillliprlw} = 4 X 3¢ = 31
i&pplylng Axiom C, wo get “
V- _ 1, 4 5 _ 752
priwf =3+ 33197 = 7383

Question (b) ealls for a direct application of Bayes' theorem, Iqua-
tion (1}, Bee. 21

cproilt = r(Oprifw}
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Ta get a stochastic variable representation of this gituation, we note
that cach event under consideration is characterized by an urn and &
eclor. 8o, we let z represent the urn chosen and y the color drawn.
We found half the values of o(z,y) in answering question {a). The
others are found in a similar manner, and the complete picture (includ-
jng marginal probability functions) looks like this:

y 9w
pe I3 2 74
1485 15 33 2
w D2 L4 5 .
1,485 5 33 27 )
1 1 1 O
5 3 3 @
I 11 TI oz
w7

26. Example—Points Chosen at Random

Suppose two points are chosen independently afn}ifat random between
0and 1. For a stochastic variable represcagalioll, we let = be the posi-
tion of one of the points and ¥ the positighy ol the other. Then each
point in the unit square of the 2y planey repregents a way of choosing
the two points betwoen O and 1. W}th:z: and ¥ chosen independently
and at random, we see that " ‘hearem 1X applies. Even that rule is
gimplified here because the total area is unity. So, to find the proba-
bility of an event, we mugq'@sd its representation in the zy plane and
get the area of that repi'@e‘rft-ation.

For instance, suppode we want the probability that the two points
chosen between (¥ and 1 arc within e of each other.  Analytically, this
would be writtendt — ¥l S & and geometrically it i vepresented by
the diagonal §0¥1p:

g &\K P ,

i Y
¢N® ™

Y

Fig. 6.
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The strip consists (as shown) of a rectangle V2 - (2¢/+/2) by e /2
and two triangles, cach with base € and altitude ¢; therefore
prile =yl Sef =€ \/g(\/§ -2 '-E':-—) 25 = 2 — &
V2 2
Let us modify the problem so as to make the variables dependent.
Suppose the first point is chosen at random between 0 and 1 oand then
the second point is chosen at random to the left of it.  Welet & and
y have the same significance as before, note that f(x) is unity from 0 to
1 and zero elsewhere, and procced to (d’y of Theorem VI It & = Zo,
. _ N\
then y is chosen at random on & gegment of length o 50
dy o< v &
Proa{ye <y S Yo+ dy} =% for0 = Uuzg"f
0 ()‘nllel‘\\'i,;sizt”“:
Now, since f(z) = 1for 0 <z <1, \\
dx for®l3z < |,
prize <z < 2o+ dx} = RN
_ 0 ‘\z’\(}therwisu.
So, using Theorem IV, we have O

prize <z < a+drandyo <Y Sjgo“—"l— dy}

@%dg for O <y < @, 0 < 00 = L,
g SR
~ N0 otherwise.
Therefore, ¢(z,y) = l/gg"i;\xside the triangle 0 < y £ 2,0 S @ < 1 and
N\ is zeto elsewhere,
{ O We should note in passing that, even

though 1/z is the product of a funciion
of = alone (i/a) and a funchion of ¥
alone (identically 1), o(zy) s no such
thing. Yhis is because the formula
¢ = 1/x applies only in a trinngle. S0
(d) of Definition 2 does pot apply.
These variables are definitely depend-

; ent. This appears very clearly if
we compute the marginal density
functions:

fl@) = f_: elz,y)dy = f:%dy 1;

gly) = f_: elz,y)dz = f %dx log G)

Frg. 7.

li

0
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Obviously, f(z)g(y) is dilferent ¥
from ¢{z,Y)- /4
For this dependent case the prob-
ghility that the points between 0
and 1 are within e of each other can
o longet be found by Theorem IX,
but {¢) of Theorem I will do the job
very nicely. Since eley) = 0 for
y > , we have only half the strip
we had before. Dor purposes of
geiting up limits of integration, we ~ .
divide our strip into two sections. Tra. 8. RV,
Now, by (¢} of Theorem I, O

prijs —yl S el = ff olz,y)dy do + ff @(@:@“jdg‘ﬁx
4 B LW
fcfxld d'c—l—flfx -l—.d}d:c
oJo W BT L™
= ¢ (1 + log -}) ,\\

27. Ezample—The Buffon Needle Ifmblem

Another illustration that fits 'I:hég}rém IX is the Buffon needle prob-
lem. A board is ruled with equidistant parallel lines, the distance
hepween consceutive lines bejn:g 4. A needle of length e < d is thrown
on the board. What i bﬁe}probabi]jty that the needle will intersect
one of the lines? Lepus eonsider the relation of the needle to the line
it touchas or the neatest line below it. We shall characterize its posi-
tion by means xo{the variables ¥ and 6. We Dow assume that y and 8

,“\‘.

a/ },,
"9

[

Fra. #.

i

1

have constant density funetions and are independent. The possible
ensess are described by the conditions 0 <g<m 0<y<d; the
favorable cases, by 0 <y < asind. By Theorem IX, the required
probability is equal to the shaded arca divided by the total area:

N
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j; o sin & Jdf %

e
¥
d
y:asin8
S/ Q
i 1
? .9\ ~
Ny
K13
Fro. 10, ,,f 3

This problem was first mentioned in print h):"‘]}:ﬁon m 1733 and
attracted attention for years after that. TisBlROf fascination Iy in
the fact that the number o appears in the 'mx}\'m The idew wus that
from the result p = 2a/rd one could gebthie “formula”™ = —= 2a/pd;
then an experimental evaluation of p wonM lead to a simple “computa-
“tion of x.”  Uspensky ({ntroductiondo Mathematical Probabiliiy, pages
112 to 113) cites the results of saveral such experiments in which the
answers are quite reagonable. ¢ Héwever, these can hardly be regarded
as verification that = = 344159 . . . . Instead, they serve as evi-
denece that we were corgect In assuming that y and § are independent
variables, each with s\é\dnstant density function.

28. Example—Gentetics

Bo far ouri ifsi?rative examples have been concerned chiefly with the
use of stoghustic variables in connection with probability problems.
We h&}ifk@ﬁlphasized this approach because the stochastic vuriable
furnishes'the framework for most of our later discussion. Tt should be
poisted out, however, that the addition principle (Axiom €7 and the
muttiplication theorem (Theorem IV) may be used quite effectively in
the solution of many simple problems concerning probabilities, with no
recourse to the notion of a stochastic variable at all.

A good example of this procedure is furnished by a simple problem
from the field of genetics. Iach organism has certain characteristies
{eolor in plants, cye color in human beings, ete.} determined by genes.
For each such characteristic, the organism has two genes, each of
which is of one of two kinds. The genes are usually designated by A
and a; thus the possible gene types are A4, Ae, and ao. In the process
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of reproduction, the offspring inherits one gene from each parent. If
the parent is of type Ad or ae, the inherited gene must be 4 or g,
respectively. An Ag parent may transmit either kind of genc with
probability 3.

Suppose, now, that we have a population (called the zero generation)
with the genes so distributed that il a member is chosen at random, the
probabilities of the various gene types arc:

AA da oo
P 2q r

Tf parents are chosen independently and at random from this populag \
tion, what arc the probahilities for the various possible gene typEsin
{he next gencration? a\

Each result in the first generation is the produet of four i}}d:eﬁéndent
fuctors: the genc type of each pavent and the choice of & geno from each
of these. We shall designate such a result by listing..tﬁ(? type of one
parent, the gene transmitted, the iype of ibe other parent, and the gene
transmitted. Tor instance, 44, 4; Aa, a will aiean that one parent
was of type AA and {necessarily) transmitted ‘en A gene, while the
other was of type Ae and transmitted ane gene. Because of the
assumed independence of these four oventsy we can usc (¢) of Theorem
VII to get the probability of such a fowrfold event.

The type 44 in the first gencrqtiﬁc}ir can result in any of the following

mutually exclusive ways: "
N\
Result ¢ £ ) Intermediate steps | Probability
Ad, A; A4, 4 p-1-p-1 P
AA PG, A pol:2g° 3% Pq
Ag Ay A4, A 2g-p-l Pe
AdyA; da, 4 2¢- 3624} \ g

AN
Thus,,b:\f\Axiom ¢, the probability of A4 in the first generation is
~O p 4 2pg + @t =+ O

\

ﬁo‘get Ag in the {irst generation, we have the following mutually
exclugive possibilities:

Roesult Intermediate steps | Probubility
P
AA, A;as, @ p-l-r-1 pr
A4, 4; e, 0 p-1-29-3% Pq
Aa, A;ea, ¢ 2-3%-r-1 gr

Aa, A; Aa, 6 273428 gt
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There is a symmetric set of results yielding e (which amounts to
the same thing); so the probability of Aa is

opr 4+ pg + o + 09 = 2(p + Ol T 7).
By symmetry, the probability of aa is

(q -+ 7%
so we have the following table for the first generalion:

AA Acg adt Q.
(» + 9" 2p + g + 1) (=7 N

. . N\ w .
Using this table, we can now stady the second generalanm. How-

ever, there is no point in working the problem over wgid i Instead, leb
P=(p+q? O
Q=p+roet T)\‘
R=(@+7n" "
R
Then use the previous results. Now,af we remember {hai beeause of
their original significance, p -+ 27 £\ = 1, we {ind thut
P+0Q =@+ +2aRD =0+ g%
P+QQ+R) =0+ Qo+ 2¢ + r)ig + e+ 20T r)
A = (p+ e+
Q@+ RB=@+ r)\(g+ 2¢ + 1) = g+ 1%
That is, the proba;bﬂitics for the second generation are the same 38
those for the firgé/ Thus, no matter what the distribution in the zero
generationd\«ﬁhé' probability distribution is stable from the {irsi genera-
tion on\\J
Thg .}uden‘r. should note carcfully that these arc all a priort proba-
'bi}iﬁies'_comput.ed on the basis of an assumption aboub the gero gener-
\lﬁt[mn ounly. If the population is very large, we can show (sc¢ Chap.
1) that there is a large probability that any given generation will sho®
an actual distribution close to that indicated by the a priovip robability
distribution. Towever, it is stretching things too far to say that they
should all be close. Therefore, even though we have proved the
stability of the & priori probabilities, 1t does not follow that the actual
distribution will (even probably) be stable at ail.  The question of the
probability of stability for the actual distributions is a very c.omplicated
one that we shall not attempt to answer.
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REFERENCES FOR FURTHER STUDY

Coolidge, An Tntroduction to Mathematical Pmbabﬂity; Chap. 1L
Levy and Roth, Elements of Probability, Chaps. v, VL
Tspensky, Introduction to Mathematical Probability, Chaps. 1T, X1L

PROBLEMS
1. What is the probability that each of the 4 players in a bridge
game will be dealt a complete suit of cards? Ans. 41(18304/52L

5 Tlach of two urns contains 5 white and 7 black balls. One ball ,
is draswn from each urn. What is the probability thab both balls drayi
are white? Ans. 2%4\,‘}

3. The urns of Prob. 2 are emptied into 2 third urn, and 2 })alls are
drawrn simultaneously from this third um. What is the prabability
that both balls drawn are white? CAdis. 1845,

4. Three urns conbain, respectively, 2 white and .3’;black balls, 4
white and 2 black halls, 3 white and 1 black balls, ©ne ball is drawn
from each urn., What is the probability that pmong the balls drawn
therc ure 2 white and 1 black? Represent'}h}s problem by three
stochastie variables, and draw a picture. ¢ 5) Ans. 13350

5. Two urns contain, respectively, 2 white and 3 black balis, 3
white and 7 black balls. Oneurn ig.gelected and & ball drawn from it.
What is the probability that this palbis white? Ans. Y40

6. Tiepresent Prob. b hydiwo stochastic variables; deseribe the
joint density funetion, and(@uswer the following question: Given that
the ball was white, whatig'the probability that the nrn chosen was the
first one? “ Ans. 4%

7. Urns 4 and"Bécontain, respectively, 2 white and 1 black balls, 1
white and 3 bla\c;R\balls. One ball is transferred from A to B, and then
one ball is d%wﬁ crom B. What is the probability that this ball drawn
from B wilh be white? ' Ans. 341

8. Represent Prob. 7 by & pair of stochastic variables. Set up the
joift Yensity function, and answer the following question: If the ball
drawn from B was white, what is the probability that the ball trans-
ferred from 4 to B was also white? Ans. %6.

9. Three urns contain, respectively, 9 white and 3 black balls, 1
white and 5 black balls, 6 white and 2 black balls. An urn is chosen ab
random and a ball drawn from it. 1f the ball drawn is white, what i3
the probability that the urn was the third one? . Ans. *Ho-

10. Two urns contain, respectively, 1 white and 1 black ball, 2 white
and no black balls. One urn is selected at random. A ball is drawn
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and replaced; then another drawing is made from the same wrn. Hach
draw yields a white ball. What is the probability that the wn selected

was the second one? Ans. 34,
11. The same as Prob. 10, but 3 drawings wore made, cach yiclding
1 white ball. Ans. 3g.

12. An urn containg 10 white and 10 black balls. Five balls are
transierred to another urn, and samples are drawn from this sccond
urn, one at a time, with replacements. If 5 such independent samples
are all white, what is the probability that the seeond urn contains only
white balls? Hint: See Prob. 21, Chap. 2. A~
Ans.  Z31s.

13. In a sequence of throws with 2 diee, what is the probakility of
throwing & 7 for the first time on the nth throw? Ans. Y (5'}{;)"”1.

14. Show that the probability is 1 that a 7 will be thyowi some time

in an indefinite sequence of throws of 2 dice. 0
16. What is the probability that the first 6 wil“precede the first 7
in a sequence of throws with 2 dice? Ans. 3{4.

16. The game of craps is played as follotizsx\";\. man throws 2 diee.
If, on his first throw, he gets either 7 o 1’1,\hé wins the game. If, on
his first throw, he gets 2, 3, or 12, he loges. If, on his first throw, he
gets 4, 5, 6, 8, 9, or 10, he continued$o throw the dice unitil he either
duplicates the total obtained onhiis first throw or throws a 7. If the
total on this final throw dupliedtes his first total, he wins.  If the final
throw is a 7, he loses.  Whébis the probability that the man with the
dice will win? x\ Ans. ?4%4g5.

17. Take Definitiofivt, Chap. 2, as a definition of probability and
Theorem V of this(chapter as a definition of conditional probability,
and prove the mifitiplication theorem (Theorcm V).

18. An urneontains = balls, numbered 1,2, . . ., Two balls are
drawn orieafter the other, without replacement. Lef @ be the number
on thgrﬁ'ﬁt ball and y the number on the second. Set up the joint
propability function for ¢ and y, and show that the marginal probabil-
Q‘ Jfdnctions are the same.

19. Cieneralize Prob. 18. If all the balls arc removed, one after the
ather, the probability function for the number on any given draw is the
same as for any other draw.

20. Show ithat in Preb. 19 all permutations of the numbers 1, 2,

. , n are cqually likely.

21, Two points are chosen at random on a line segraent. What is
the probability that the 3 segments determined can form the sides of
& triangle? Ans. Y
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22, The same a8 Prob. 21, except that one point is chosen at random;
then the other is chosen at random to the righi of it.

Ans. —Y4 -+ log 2.
23, C(iiven the joint density function

3 3y + 3y’ for{]_g;cglandOSyél,
olay) = {{) otherwise,

find the conditional probability prie<- nfld <y = 241, Ans. 31110,
94. Tind the marginal density functions in Proh. 23. A
Ans. =+ 32ty + 3437,
95, Are the stochastic variables in Prob. 23 dependent or ihde-
pendent? Why! O

In each of Probs. 26 to 31, a joint density (or probabiliigﬂrj’funct-ion
ola,y) is deseribed. It is understood that ¢{z,) ={ Coutside the
region specified. Tn cach case apply (d) of Definition2 to determine
whether the variables are dependent or indepenxdg(;js.

98. oloy) = (1/ant)[1 — sin(z + 1)) (gt <m —r Sy <
Ans.  dep-

27, ¢lzy) = %[cos(:c +9) + cog@aﬁ'—:"y)] (0 <zLHOSyYS g)

N Ans. ind.
28. ofx,y) = dxy 0<&L0 <y <L) Ans, ind.
29. o(zy) = By (0\' @<y, 05y < Ans.  dep.
30. x = 1, 2,35y ;}; ':BF‘P(:I:;y):
2G4, Ve 53
o Vas Ms 336
O Ye 1§ 34a Ans. ind.
N\
3L =1, 2,37 = 1,2, 3; o(zy):
AN
\\ Ho Ho o
o % o
: o o Lo Ans. dep.

39, Let ®(z,y,2) = (1/8x%)(1 — Gn z gin ¥ sin 2) In the cube 0 < &
<9, 0Ky <2m 0 <z< 2 (@=0 olsewhere) be the joint density
function for the three stochastic variables 2, ¥, and z. Show that ®
and y are independent, ¥ and # arc independent, & and z are inde-
pendent, but =, ¥, and z are not.

33. A number is chosen ab rendom between 0 and 1. Letz. =1 if
the nth decimal place is & 7, and let z. = 0 if the nth decimal place
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is anything else. Show that the stochastic variables zy, o2, . . ., @
are totally independent. Use Prob. 34, Chap. 2. Note that to
anticipate and solve Prob. 34, Chap. 2, by using (¢} of Delinition 2 in
this chapter would be to assume the independence of these variables,

34. A number is chosen at random between 0and 1. Let a, bhe the
nth decimal place.  Show that the stochastic variables @y, @, . . ., 2k
are totally independent.

The A pene is dominant, the a recessive.  This means that organ-
jsms of types A 4 and Aa will exhibit the same physical charuelonkgdis—
that going with the A gene.  Only type ag will exhibit the @ chfsatter-
istie, though type Ade can transmit it to offspring.  In Prohs 2to 40,
sssume that the a priori probabilities for the various gene I¥pos nre

- {
AA Aa aa %7

1 14 1. '%\\
/‘l— 72 ZE)

35. If both parents have the dominant ,elﬁ’act.eristic, what 1s the
probability that the offspring will have the'recessive onc?  Ane 14,
36. 1f one parcnt has the dominant dhdracteristie and one the reces-
sive, what is the probability that thedoffspring will have the recessive
one? o ) Ans. 4.
37. If the offspring has the régessive characteristic, what is the prob-
ability that both parcnts da? Ans. 4.
38. If the offspring ,bﬁ,s\the dominant characteristic, what is the
probability that both*parents do? Ans, 2.
39. Tf all four grandparcnts have the dominant characteristic, what

is the probabilitydhat the sccond-generation offspring will?
K2, Ans, B4,
40. If '&klo}fb'ur grandparents and both parents have the dominant
charaqtgr}s ic, what is the probability that the second-generation
offspring will? Ans. 334

¥16-
O



CHAPTER 4
REPEATED TRIALS AND ALTERNATIVE EVENTS

Wo group together in this chapter the discussion of two rather unre-
1ated formulas.  The first amounts to no more than a special example
of the combined usc of the addition prineiple and the multiplicatieh
theoremn. Bowever, it has agsumed sufficient importance in the &bady
of probability to deserve gpecial mention, The second formil gives
us something akin o an addition principle for events ghii’;h -are not
wutually exclusive. A

-\
29. Bernoulli Formula—Physical Version \4

For our first problem the physical picture xi&\tfmt of & sequence of
exporiments.  In particular, we want to Qtn}si}ler 2 sequence of inde-
pendent bt identicul experiments. "The fifst extensive study of such
a situation was made by Jakob Berngulli and published posthumously
{1712).  As a result, his name is .}J,'S}iaﬂy attached to sequences of this
type (Definition 1) and to the formula (Theorem I) that applies to guch
gituations.

Defindtion 1. A Be}uﬁﬁ]lian sequence of trials is defined as & {(finite
or infinite) sequencs of experiments satisfying the following conditions:

AS

(a) Tor endiheperiment, the possible results are classified as either
sucness orthilire.

(b) ’I‘B”e\pmba‘oility of suceess is the same for every experiment.

'(&’)\"Eéuch result ig independent of all the others.

\Tn succeeding chapiers we ghall have a great deal to say about
Bernoullian trials, It will facilitate matters i we adopt a gtandard
notation in eonnection with them. The probability of success O an
individual trial we shall always denote by p. The probability of failure
(1 — p) we shall denote by ¢.

The phrase “scquence of trials” gives the impression of a sequence
of repetitions of the same experiment. Obviously, sueh a sequence of
repetitions is an example of a Bernoullian sequence, but it is not the

61
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only one by any means. For example, the simultaneous performance
of the same experiment on diffcrent sets of apparatus ean be an cqually
good example. We want o think of the “trials” as scquentially
ordered, but this ordering may be purely arbitrary. It need nol have
anything to do with time. If we foss o single coin n times or fhrow a
single die » times, we have an example of a Bernoullian sequence; but
we also get an example by tossing n coins or throwing » diee.

It is not even neecessary that we do » things to get an example of a
Bernoullian sequence. If we choose a single number at randp
between 0 and 1, we define an infinite sequence of decimal place S saveh
of which either is a 7 (success) or is not (failure). These ey oals arc
totally independent and have equal probabilitics of success {Brob. 33,
Chap. 3}; so with one twist of the wrist we deseribe an mhmio Bernoul-
lian sequence. )

The simplest cases of sampling furnish mtele%tmn examples of
Bernoullian sequences. If an urn containg blaek and white balls,
ganple drawings (with replacement) arc ind@}:éndent events, cach
with only iwo possible outcomes and \\1?& identical probabililies.
Therefore, a single sample aggregate of t]ns sort may be regarded as a
Bernoullian sequence.

Another type of sampling that is. eqsenh.ﬂly Bernoullian is & spot-
check inspection on a production: line. A factory is turning out gad-
gets of some sort.  All are produced under essentially the same condi-
tions, but occasionally a defettive product will appear. Apparently
therc is some fixed pr &Blhty {characteristic of the factory) that a
given ifem will be defective. Furthermors, the fact that a given
product is defectiv®;Has no discernible effect on the probability of
defects in any ofher products. Therefore, a single item taken ofl the
production Jime‘end inspected furnishes us with a single “trial,’” and =
series of sg&r inspections forms a Bernoullian sequence.

Bomething else we might note is that a sequence of Bernoullian
sequenées may oceasionally be regarded as a DBernoullian sequence.
buppose we find by the methods of this chapter (or by more efficient
methods, developed later) that there is a certain probability p that a
sample of 100 items off & given production line will contain exactly 2
defective items. Then, 20,000 samples, divided into 200 scts of 100
each, form an example of a Bernoullian sequence of 200 trials. Joach
“trial” is a set of 100 sample items. ‘‘Buccess’” means 2 defective
items out of the 100.

As a general rule, in the study of a sequence of sample sets, we are
interested in more than a single question to be answered yes or no; so
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the situation is usually not strictly Bernoulliian. However, many of
our later considerations concerning sequences of stochastic variables
{Chaps. 8 to 11) may be regarded as generalizations of the notion of
Bernoullian sequences. The student would do well to get a picture in
this simplest case of the many different types of situations that can be
analyzed as sequences of “trials.”

The fundamental problem in connection with Bernoullian trials con-
cerns the probability of a given number of successes in & given (finite)
number of trials. :

"\
Theorem 1 (Bernoulld's Formula). The probability of exaptlz T
successes in n Bernoullian frials is \ N
ﬂcrprqn—r_ (5,}“ )

? '\"
Consider a particular sequence of n results, each eiﬁh\m a sUCCess OT &
failure: \
.\\,
s
O
The probability of each S i8 p, and that gféach F is ¢. Remembering
that ihe 4rials are independent and ugtng' (¢) of Theorem VII, Chap. 3,

we have that the probability of tl}i'eg'pé,rticular sequence is

SSFSFF -+ F

ppapag~, * - 9P = P

Now, “r succesSes’™ m ns\ any one of the sequences containing r
successes and n — % ifailures. These different sequences represent
mutually exclusive-gvents, each with probability p'¢*" The number
of such sequences {4 clearly the number of ways of putting the §’s in
different posit{uﬁ"s on ihe framework of n places. Since there are r of
these S's tQ\be placed, the number of sequences is *Cr. Therefore, by
the additten principle, Axiom €, the probability of r successes in n
trialg i "Crprg™
\ ) )

From Theorem I and the addition principle, we at once derive the
following corollaries:

Corollary 1. The probability of at least r successes in 7 Bernoullian
trials 18

5 e

=t
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Corollary 2. The probability of at most r successes in # Bernoullian
trials is
;
z nc‘spsgﬂ—-s_

g=10

30. Bernoulli Formula—Stochastic Variable Version

In order to adapt much of the discussion in later chapiers o the
important speeial case of Bernoullian sequences of trials, we should
formulate a stochastic variable deseription of such a sequence of cyperi-
ments. If we perform a set of n experiments, the record of all g rddults
deseribes a compound event with » components—each compiouds:t the
result of onc experiment. Thus, we describe the whole skibof experi-
ments by an n-dimensional event space with each of the # coordinates
representing one esperiment. Tet us eall these c-o(){d;i'nal.-e variahles z;
((=1,2 ...,n). Notethat we are using g Oy denote a variable,
not a specific value of some variable 2. The edtvenicnee of thiz nota-
tion will soon be obvious, and the studeni/ist overcome the habit
formed in analytic geometry of usingé{uh)scripts with z to denote
constants. O

This n-dimensional representatiom eould describe any sct of # events,
but in the Bernoullian case we @al be much more speeific. Acceording
to (@} of Definition 1, each variable 2; assumes only 2 values —ome
representing failure, the her success. Tor each vuriable, let these
values be 0 and 1, respeClively. Then the event space consists of the
9= corner points of ph\e}mit ““pube” in n space,

Now, (b) of Defition 1 tells us that each variable x; showld have &
probability fgncfidn fi(z;) whose form is the same for all i's; namely,
’\: ,,\ Y Xt 0 1
:f\ flzd: ¢ p

”*Tl}c independence criterion, (¢) of Definition 1, means that the sto-
}h:ist-ic variables z; should be independent. The mathematical inter-
pretation of this is that the joint probability function is the product of
the marginal ones:

*
e

go(x;[, Fay . - - ,xn) = H f\i(xi)'

i=1

To see the mathematical representation of the number of successcs
in 7 trials, all we have to do is use the right words to describe what we



arc, 30] REDTEATED TRIALS AND ALTERNATIVE EVENTS 65

have already said about the stochastic variables xz;. Suppose we put
it this way: The value of z; is the number of successes on the ¢th trial.
This is exactly what we said before; and when we state it this way, it is
clear that the number of successes in a given sequence of trials is the
sum of the values assumed by the ’s for that particular sequence. In

symbols,
n
r= E ;.
i=1

Translated into these terms, Theorem I reads as follows: A
xS
NS
Theorem Il. If 21, @y - . . ; %n 8I€ independent stocbg;gﬁé’ vari- |
ables each of which assumes the values 0 and 1 with prgb@})ility g and
\

p, respectively, then R\

13
r=Ym Y
i (¢

=1 “
*Nx\

is & stochastie variable with probability.fﬁﬂbjc-ion
f(ry = "6

"This s merely & restatermCni of Theorem 1 and therefore follows
from it. However, a dizeep proof of Theorem IT in terms of prob-
ability functions might\help to clarify some of the concepts intro~
duced hera,

We have ah'ea:gy foted that

'\\:\’ o, Ty - . - ,xﬂ) = [llfi(xi);

AN
th{é‘fi)ré if we have a point in 7 space for which Ex,f = r (i.e., one
T

whose coordinates consist of » ones and # — 7 geros), the value of
¢ at that point is the produet of r factors p and n — 7 factors ¢.
In other words, ¢ = g™ " at each such poimnt. Thus, pr{ 2z =7}
is p'g" times the number of corner points of the unit cube for which
EZ} = 7. .

Perhaps the easiest way to count these corner points is to repeat the
argument used in proving Theorem I, noting that the ecorner points on

the unit eube are given by sequences of zeTos and 1's. However, the

n
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66
picture might prove instructive. Let us draw

1 1

following geometric
some skeleton “anbes.”

2 dimensions
N\

Q‘Q

A\
ant stand out mueh more clewrly if we

The hyperplanes Zx; = condth
collapse these cubes like f\r’s:

N

'\&. )

A
:"‘\J:O r=t r=2

;”‘)\" 2 dimensions

=f 2 r=3
4 dimensions
Fra. 12.
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In cach of thesc sketches it 1s clear that the number of corner points
{or cach value of = follows the formula *C,. Furthermore, if we study
these sketehes of cubes a little more closely, we note that each one is
made by taking the preceding one and drawing a line through each
corner point.  Bo, each corner point on the n cube blossoms info two
on the {n - 1) ecube—one <hifted to the left, the other to the right.
Thus the corner points for a given value of r on ihe (n + 1) cube come
from those on the » cube for the values r and » — 1. A comparison of
this remark with the identity w1, = (', 4 *Cpy (Prob. 18, Chap. 1)
chows that the formula 1

p?‘{ EI“ = ’.’"} = nc‘r;pfgn—r .'\“\
must hold in general. : .\ ’

o
£ NN
L 3

31. Example—Random ‘Walk Problem O

Suppose a point starts from the origin and moves alo"h} the # axis in
jumps of 1 unit cach. Fach jump may be cither forpard or backward,
snd we shall assume that ab each step the probabilil for each direction
is V4. Furthermore, we ghall assume thai eagh jump is independent of
all the others. Aften n jumps the point I;ﬁg}hi; be at any one of a num-
ber of points ranging from —n to 7, and e want to find the probability
of its being at each of the possible pdints in this range.

Tet o 2=1,2, ... ») bendhe displacement on the ith jump.
Then, the x's are independe{rii ctochastic variables each having the
probability function e
\\ o —1 01

f Sz b3 %)

A/ .
Now, the net displacement (i.c., the abscissa of the point) after #
jnmps is thogtiof these 7 individual displacements. So, letting = be
the absc-is,sa"}f"the point after n jumps, We have

N,

N

P "

Q r = Exs.

\‘;

These variables do not fit Theorem 11, but the variables

i=1

___1735—1-1
&= 2

do it. Therefore, from Theorem 11, we have

"

(1)
pr lZ 7 = r} = Cr(ﬁ) (ﬁ) = m
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To find out about x, We note that

Thus, £ = @ means = 2 = {a + n)/2, whence

_ it

priz = al = — 4
That is, the probability function for x 18 £\
_ Cgmin O\
f(.’ll) - On ) N\ e

In the two-dimensional random walk problem, we .aﬁé’lzi"m{‘ that at
each jump the point may move } unit forward, baclgy{ifd, up, or down,
each with probability 4. Our first inclination night be to let x be
the +th horizontal displacement and ¥ ihe -it}w;«crtic::.ﬂ displacement.
The trouble with this is that, for cach ¢, @ ;L}J\c’i;;x; +1ail to be independent
because we have assumed that, if there isahorizontal displacement on g
given jump, there is no vertical disp}e,cfcrhent on that jump, and vice
versa. RN
Instead, let us tilt the z and yaxes at an angle of 45° with the diree-
ions of the jumps. Then, let 25 ‘and y; be stochastic variables with a
joint probability functien{g‘;ﬁxi,y;) deseribed as follows:

Yi o \\g:(y,)
D % u %
NS bz oo
O s 3 fil=d
,%w" . -1 1 [N

Clearlf;f";" w: = i~ g: at each point; so the variables are independent.
Pustbermore, they deseribe a random displacement of length V2ina
Jipéction tilted at 45° to the axes. We could change scale to make the
jumps of length 1, bub it i much simpler to leave them the way they
are.

Yince the jumps are supposed to be independent of each other, this
construction gives us 2n variables ©1, Ta, - « - 2 Tm Yl o o o 1 YW cach
independent of all the others. Thercfore, the two sums

i3

n
T = Z{lsci and y = Z i

i=1
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are independent of each other. This means that the joint probability
function ¢fz,y) will be the product of the two marginal probability
functions f{z) and g{y). These last two are exactly what we found in
the one-dimensional problem; so

v "oz *Clyin 7 apmira ™
elzy) = f@g(y) = _t%gg . (;; 28 (=t )z;nctwn)fz

gives a joint probability function for the abscissa and ordinate of the s
moving point after n jumps. .
Oy
32. The General Addition Formula s\

The second problem we want to consider in this chapter is"reﬁgh]y
this: What modifications must be made in the addition pr1nc1p1e if the
events are not mutually exclusive? The answer to thig @uefatmn looks
rather complicated unless we introduce some speeialMiotation. Teet

By Ky, ..., B, be any set of n events, Thel},,ilébf
.
Sl E p’!‘ ¢ ‘t v
8y = Epr EE’,‘}

i

Ss

Exp? E’FE;n

;3,,15«;.?{8132 e EH)

whers the summations( Uver several indices are taken to mean the sum
of all terms obtaingd by taking combinations (not permutations) of
the F/s. Fnr\'krig}%incc, if there arc three events, Sz is

s\ b ]
AN priELE A+ priEEs) 4+ priEEs},

NS

not "\ ¢

pri m_«zg V o+ priE By} + priE.E.)
4+ pr{ELEs} + prifals) + priBiEs].

Theorem III. Cliven any set of n events, v, Bz, . . .,
{Eﬂ}=s1—82+33*"'i8n=z("l)wl‘&“'
= Bt

To prove this formula, let us think of the events E; as point sets in
an event space. The event ZE, is the set of points belonging to one
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or more of the individual sets E;, and pri{ZE is the integral of 4
joint density fupction over this set. Each of the probabilitics appeat-
ing in the sums Sk 18 the integral of this sume density function over
some set. Iowever, the sets over which we integrate overlap.  Fur-
thermore, sometimes we add the integral, and somelimes we subiract.
Let us take a colleetion Ey, Bi o -+ B of the I's and designate by
R the sct of all points of ZE; that belong to each of these scts and tono
others. Note that in general It is not the product of these sets. A
point in the product might belong to other I's too. Now, each po'\nt
in SE; belongs to one and only onc of these sets it. Thereforg\we
ghall prove the theorem if we show that, for an arbitrary sot ST of this
type, the right-hand side of the formula gives a net resali{af* exaetly
-1 so far as the intcgral over R is concerned. ¢ f.‘;' )

Suppose, then, that J is the set of points helonghi@yto cach of the

sets Eoy By -+« » B and to no others. A pmdu‘c;\set 11E; will con-
tain the whole of R if all the subscripts over_which we multiply are
taken from among the indices 4y, 2a, -« - 'z};’,\\('jt.her\viso, {he product

set will contain none of 2. So the integrghbyer JT appears in the sum
S, only if k < 7, and then it appears (" Gintes, vnce for every combina-
tion of k subscripts taken from the rindices associated with 2. There-
fore, the net count on the numbertol “imes we integratc over I 1s

“\ (_1)k+1 e
¢ ".,‘kZ‘]
Now (Prob. 20, Chap\b,

0 = i (—-}Q};?(*;v = "y + 2 (—1)" Cr=1— i (—l)k'H "y

g=o VY k=1 k=1
whence N\
\Y r
o) 2 (— 1) 7Cy = L.
\
) E=1

33. Example—The Matching Problem

There is a problem with a number of applications which illustrates
very nicely the use of this theorem. If » numbered balls arc placed one
in each of n numbered pockets, what is the probability that no one of
the balls is in the pocket corresponding to ils own number?

To get the answer to this, we shall eompute the probability that ab
1east one of the balls is in the right pocket and subtract the result from
unity. To this end, let E; be the event that the Zth ball gets in the
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right pocket. Then, the required probability is given by

L)

1-—10?‘{2 Ei}-

i=1

The second term we compute by the formula. There are n pockets for
the 7th ball to go into, cne of which is “right " ; therefore (see Prob. 19,

Chap. 3)

and - & ’\t\
81 = zp?' = 1. : :;;}\ ”

L ¥

"\
™

If the #th ball is in the right pocket, there are n — 1 gékckets for the
jth to choose from; so

1 N
predBi} = —— i .:\\"
O
Then, Theorem LV, (,hap 3, gives us th&t .
1~:3."‘“1
priBEs} < ?‘L n— 1
Hence,
ﬂ(jz B -1_-
Similarly,

\)
. a0

S j—;’i p’r{EiEJ—Ek} = Wﬁ—zn___—f)

,\\“' ik

ete, Thvre}oro the required probablhty is
{\“'

R

There are two interesting things about this probability of no corre:
spondences. First, it is greater for even n than for odd % Second, &8
#— w, it fends to

1
.-=g—‘;

L#:e"l'—".gﬁ']"-

k=0
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Using the above formula for the probability of no correspondences,
we can easily find the probability of any given number of them. Ifa
certain set of r balls is specified, the probability that cach of them s in
the right pocket is

1

e

nmﬂn---m—r¥ﬂ'

The probability that none of the others is in the right poeket is given
by our original result with 7 replaced by % -— ¥
on—r
(=L, O
k! N

k=0 A\
There are ", different sets of r balls, giving us »(, Aghially exclusive
events of the form, “These r balls and no otfiery’ are in the right
poekets.” The event *‘exactly v corrcspond{:sg:es” is the sum of these
mutually exclusive events; therefore ils pgghz}tﬁlity 18

L

“C, __;Eii;_l_.ﬁ RN
am -1y - —7 A4y Ur! I3
RN R k=0

REFERE»@;S FOR FURTHER STUDY

Levy and Roth, Ele rﬁé&s’of Probability, Chap. V.
Uspensky, Introdudtion to Mathematzcal Probability, Chaps. 11, T11.
~\1}\ PROBLEMS

1 Wl{)é;his the probability of getting exactly 3 acesin b throws of &
single di8? at least 3 aces? Ans.  250/7,776; 97G,7,776.
2. What is the prohability of getting ab least 1 ace in 3 throws of
<a?§'rrig‘m die? in 4 throws? Ans. 4,651/7,776; $71/1,296.
3. What is the probability of getting exactly 3 aces 1n a singe throw
of 5 dice? Ans. 250/7,776
4. A coin is tossed and the cunulative heads-tails score kept.
What is the probability that the heads total will reach 6 bofore the
tails total reaches 47 Ans. 13%12-
B. Generalize Prob. 4. What is the probability of getting M heads

before n tails? :

mtn-1

Ans. _._1.—~ 2 w1

2m+n--- 1

r=m
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6. Ceneralize Prob. 5. Ina general scquence of Bernoullian trials
(probability » of success), what is the probability of m suoccesses

pefore # failures?
m+n—1

A-ng' 2 m+ﬂ‘lc'rrprqm+n—r—l'

=

7. Player A has 50 cents, and player B has $1.10. They want to
play a single game in which the winner will take the entire amount.
Devise an equitable game that can be played by tossing a coin. Sug-
gestion: They 1oss the coin b times, and A bets there will be exactly 2
heads. Find at least t¥0 other simple solutions.

8. Devise an equitable coin-tossing game in which A’s stake is @0,
cents and B’s stake is 90 cents. A

9. From a supply of black and white balls 4 balls are pla,ue"(‘l‘in an
urn, the color of each being determined by tossing a coip.jf A ball is
drawn from the urn and replaced. This is done 4 _times, and all 4
draws are white. What 18 the probability that the apnvcontains only
white balls? S Ans. 844 g,
" 10. The Bulffon needle experiment (sec et 27) § performed 5 times
with the needle length one-half the distance hetwecn the lines. What
is the probability that it will touch a linelon 2 out of the 5 tries?

o 2 3
0N Ans. 30 (1) X (1 - l) .
: NNy T T
11. What is the probability gfthrowing at least 8 exactly 4 times in
7 throws of 2 dice? x\ Ans. 35(342)* X (U2)*
12. What is the prubaﬁi@tjr of throwing exactly 8 at least 4 times in
7 throws of 2 dice? ()

Amns. 35(346)'(366)° T 21(346)5(3146)2 + T(346)°(*186) + (B46)"-
13. There arc#Palls and 4 urns. Fach ball is placed in an urn, with
the plaeemen{af‘éach ball independent of the placement of the others.
Anurp is Qch'c%cn at random; what is the probability that it will contain
2 balls2an Ans. %436.
4 \The experiment in Prob. 13 is performed 4 times. What is the

probibility that an urn with 9 halls in it is chosen cxactly once?
' Ans. 4 X P%55e X (20%256)%
16. A number is chosen at rendom befween 0 and 1. What is the
probability that there is exactly one 7 in the first 10 decimal places?
Ans. /100
16, A number is chosen a6 random between 0 and 1. What is the
probability that exactly 5 of its first 10 decimal places are less than 57

Ans. 6§é5&

N\
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17. In a sequence of tosses of & coin a mun stakes 51 on heads at each
toss. Let z be his net gain after # tosses. Trind the probability fune-
tion for z. Ans. fla) - "Clapnp/20

18. A maze consists of equally spaced north-south paths and equally
spaced east-west paths, intersceting to form a c¢heckerboard axray. A
rat is started from some intersection and wanders through the maze in
a completely aimless fashion, stopping at each interseciion and choos-
ing one of the 4 puths at random. ¥ind the probubility that the 2nth
interseetion he comes to will be the one from which he started.

5 {N
Ans. (ONTE

19. Take a Bernoullian sequence of trials with p = L4, afidhdet up
the probability function for the number of successes in 7 tifals, 8 trials,
9 trials, 10 trials. (»'.'; '

20. What is the most probable number of successes in cach of the
four cases in Prob. 197 Ans. 2,2 0r 3.('!?1?1:-111}-' likely), 3, 3.

21. Show that the probability of r successcaNR » Bernoullian trials
divided by the probability of r -+ 1 succe.*gsg:si\i% (r + Lyg/(n — 7)p.

99, Under what circumstances arc theidsuccessive values of 7 that
are equally likely? Iint: The ratiq Ng Prob. 21 must equal unity.

Aws. " When (n 4+ 1)p is an integer.

23. Show that the most prohz}tﬁfd value of r is tae grealest integer
less than or equal to (n + 1)}p. SHint: The ratio in Prob. 21 increases
as rincreases. The most pfebable value of r is the first value for which
this ratio is greater thf};rimit-y.

24. When is 0 thednost probable value of ¥? When is # the most
probable valuc? (dns. Whenp < 1/(n + 1);whenp > #/(n + 1)-

26. Show tha‘lsl'tﬁe probability of at least r 4 1 successcs inn4+1
Bernoullian Axials s

’&\" (r 4+ 1) 0y [ (L - 2 de
Hint; \See Prob. 26, Chap. 1.
26:%8olve Prob. 7, Chap. 2, using Theorem 111 of this chapter.
““97. What is the probability that at least onc of the players in &
P¥idge game will be dealt a complete suit of cards?
Ams. [16 X 131 X 301 — 72 X (181)* X 26! + 72 X (131)*/52%
98. What is the probability that the rat in Prob. 18 will return to his
starting point at least once in the first 6 legs of his journey?
Ans.  1,345/4,006
99. An wn contains 5 white balls and 5 black balls. Ten times 2
ball is drawn and replaced. What is the probability that each of the
whitc balls is drawn at least once?

Ans. 1 — E(3{0)!® + 10(8{0)" = 10(H{0)®® + 5(3{0)** — (1)
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30. From a student body of 5,000, a student opinion poll takes a
random sample of 200 student opinions. They do this by merely
stopping a student on the campus, regardiess of whether he has been
quest-ioned before or not,  'What is the probability that each of the 35
members of & certain fraternity will be guestioned ab least once?

35
- R i)
IR 1 9@:3" o
Aﬂs. 2 ( 1) Cr( 5’000
r=>0
O
{} “
,.\:“.
AN
QY
O
D
N
AN
% \0}
N
N
R
N

e
@
A0
~O
N
\\;\,



CITATTER 5
MORE ABOUT STOCHASTIC VARIABLES

Throughout most of Chaps. 2 and 3 we have Tooled] ad Ll stochastie
variable and its density funetion as the framework foe the Nt hetmhti-
cal model of a physical situation.  Lor all practical purposes wht we
have done is to jump from the physical situation to Thedbéhastic
variable and its density function and from there fo the ¢xelrt space and
the probabilities of events therein.  However, this isdbr proctical pur-
poses only. A quick look at Definition 2, Chap£2¥ will show that,
while this point of view may be practical, it i3 fundmentally hackward.
The event space and its distribution functippave the founduiion ele-
ments of mathematical probability, and fajs‘&;éhz.m!.ic variahles are fune-
tions defined over this space.  The pritleipal thesiz of this chapter 18
just that. A slochastic variable is & ﬁrw!ion. The operations per-
formed on stochastic variables in{succeeding chapters will be orich
easier to understand if the :‘:‘Ludé'nf’ keeps this in mind.

34, Functions of Stochasti{}u\i'ariables

There is no rcasona@y\ve should serap the work we bave done so
far, however. Let us\ook at it this way: Certain stochastic variables
(viz., the coordinate’ variables) and their density functions scrve to
describie the ,A-fg?lt space. 'Thus, functions defined over ihe event
space couldeBi¢ regarded as funclions of these coordinate variables.
That is,:%:{ physical situation is represented by a variable 2 and 18
densityfunction f(z), then in gencral stochastic variables will be fune-
tior€Na = ufx). In particular, ulz) = 2 describes the eoordinate
Mr‘f{ible itsclf ag a funetion over the event space.

We are accustomed to seeing a density function (or probability fune-
tion) associated with a stochastic variable; so the gueslion might arise
whether or not stochastic variables in general have such functions.
The honest answer to this question is, “Not always.” However, if;
instead of describing probabilities as ordinary integrals of a density
function, we desceribed them as Stieltjes integrals of a distribution
function (see Scc. 13), then the same form could be applied to ail
gtochastic variables. In order fo give as representative a picture as

76
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we can of this important fact, let us discuss the special cases in which
the forms we have adopted can be carried over.
The discrete case can be handled in general.

Theorem I. Let S be an event space, discrete or continuous, with
any number of dimensions. Let # be a stochastic variable defined over
S, If the set of all possible values for 4 is a discrete set, then a proba-
pility funetion g(u) is given by

gla) = prifal

whers E, is the set of points in S for which 4 = a.

Q

O\
.‘:\ "

This is an immediate consequence of () of Theorem L1, Chap. 2.

In the stochastic variable description of Bernoullianitfials (Chap. 4)
we have already seen an example of & diserete vatiable defined over &
multidimensional space. There u was the sum, e)the coordinate vari-
ables, and the sets Eq referred to in l‘heorengl avere the scts of corner
points on the “cube” contained in the hyperplanes Zz; = &.

It is worth noting that in Theorem 1 he only thing that has to be
diserete is the set of values of . L@ Tater section of this ehapier we
chall look at some discrete vari }éles" defined over continuous spaces.

Theorem II. Lot 2 be o ‘pi:ochastic variable with a density function
fle), und let u = u(z) fe ' strictly jncreasing (or strictly decreasing}
function. of z. Themhy s a stochastic variable with a density function

O e = fetlle

where a:(u}\ié,\t}ie inverse function to u(#).
O\

W e\'\;\rﬁl.lt a function g{w) such thab

"

Y pric<u<d} = fj glu)du

for every ¢ < d. Let a = 2(c) and b = x(d). Then, in the strictly
increasing case, ¢ < u < d is equivalent 8o & <z £ b and
pric < u < d} =p-r{a§x:£b}
= [ fte)ds
= ];df[:v(u)la:’(u)du
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by the familiar rules for change of variables in a definite integral. In
ihis case ='(u) > 0 everywhere; so \a! ()] = o'(u), and the theorem is
proved for the case of increasing .

In the strietly decreasing casce, ') = —='(u), so that a minus
sign is introduced. This is as it should be, however, because in this
ease ¢ < u < d is equivalent to b < x < a; so onc set of limits of
integration must be interchanged.

This is as near as we can come (on the ficst-year caleulus level) to
reducing the continuous case problem to a formula. Howeyer,
Theorem 11 is too restricted to be of much use. The following infolrhal
suggestions will cover many important cases. )

'\
N

Theorem III (Mullidimensional Case). 1f a stochagticyariable u is
defined over an event spuce of several dimensions, che are two sug-
vested procedures for finding a density functiondoyi:

(@) Find the set in the event space ?ﬁ.\\\{-’hich t <<tk dt
Fstimate the probability of this sct from_the joint density funetion,
and apply (c) and (d) of Theorem Y, .C"mip. 2, if possible.

(») Tind the set in the event spagdfor which u < 2. JInlegrate the
joint density function over this gob*to find its probability, and apply
(¢") and (d") of Theorem V, Chap. 2, if possible.

Theorem IV (Mully ?,uE}d Case}. If a stochastic variable u fits
Theorem TT except thatrlt is strictly inercasing over some intervals of
the = axis and strietly decreasing over others, apply Theorem [I to
each branch o “th}, inverse function. Then, for cach value of ¥, add

the results bo,get g{u).

Suppéjse x and y are stochastic variables and u is a function of
al,op;e;.\.' "Let us suppose # is strictly inereasing; other cases follow ab
dncé by the application of Theorem IV. Then, the set for whieh
a < u < B is the vertical strip in the zy plane defined by the inequal-
itiesa < x < b where a = u(g) and g = u(b). So, if « and y are inde-
pendent, we have

orla<u<Bande <y <dl = pri <gz<bande <y = d
_prla<z<blprie <y <dl =oprla<uLplpricsy Sdl-

That is [sce (¢) of Definition 2, Chap. 3], and y are independent.
Now, if v is a function of y alone, we apply the result just obtained to
see that 1 and v are independent. Thus, we have proved the following:
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Theorem V. If # and y are independent stochastie variables and if
u = u(z) and v = o(y), then u and v are independent stochastic
variables.

The examples in a later section of this chapter on normally dis-
tributed variables will serve to illustrate Theorem III. By way of
illustration of Theorem IV, we might return to the problem of the
time of disintegration of the radium atom (see Sec. 14).

In this problem we have 2 ctochastic variable # with a density ~
function \

Letz  forz = 0, 1Y
f(fc) = [0 for z < 0. . \“\' ~
[n Chap. 6 we shall sce that an important stochastic varjabie”ih con-
pection with this problem is A\ N

12
’L{:({E—E)' ’x"\\;
\.

Now, the inverse function is

1 AN
z= X '\/I\"r -!-; % N
with the provision that z = 0. Th.e};ﬁ{;éture:

A
AN
¢ ’\';

) :..\‘.s;
W Fie. 13.
The inverse is double-valued for O < u < /R and single-valued for
> 1/kE* Now
: 1
I}' ) = _,_t .
(u) 2~—-—'\/u,

hence on each branch of the double-valued gection

2] = 5 \1/;..,
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On the top branch

fle(u)] = o~ kvl
On the bottom branch

Jle@)] = kel

Therefore,
0 foru <0,
FVE—1 o-kVu=1) = — coshi(k e
VoA Y=o ATEVE
glu) = forQ ﬁ’\’t\ﬁ\ﬁ l-’
) RV

"\
35. Translation and Change of Scale ’

Tn many stochastic variable problems i’r.,iéz'\\cénvenient 1o translate
the axes—that is, if we have & stochastia V}si?}able z, to introduce 2 NeW
stochastic variable z =2 — ¢&. NO‘\\;‘,:ﬂﬁS new variable is merely &
function of the old one;so if we havelphe density (or probability} fune-
tion for z, we should be able to use. Pheorem 11 (or 1) to get the density
(or probability) function for 228"

For the continuous caserale) = 7z + a; 80 2'(z) = 1. Thus, il fx)
isthe densityfunction.fmi';l,f}che density function for zis glzy = flz + a).
The same result holgis\m the discrcte case. 2 = a Ieans ¥ = & -+
therefore, by Theprem 1, g{a) = priz = o« +a} = fla+ a). Thatis,
gz) = flz + 51\) NG et us state this result formally.

7\

Them:&él“VI. If x is a stochastic variable with o density {proh-
abi]it.yj'; function f(z) and if 2 = z — ¢, then 2 is a stochastic variable
with'g'density (probability) function gle) = flz + o).

\ 9,

A transtormation of the form z = kz amounts to a change of seale on
the raxis. ‘This, too, is a usciul operation on a stoch agtic variable, and
wo should do well to find out what it does to density and probability
functions. Here, for the firsh time, we see the essential difference
between density functions and probability functions. We have
emphasized the analogy between the continuous and discrete cases
until the student may wonder why density and probability functions
even have different names, The crucial point is that the density fune-
tion is multiplied by dz before being added (integrated), while the
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probabﬂity funetion 18 not. This distinetion shows up very clearly in
the two different formulas for the new function after a change of seale.

Theorem VII {Dserete Case). Haxiza stochastic variable with a
probability function f(z) and if 2 = kx, thenzisa stochastic variable
with a probability function g(z) = f&/k)-

This follows immediately from Theorem I. 2 = o means & = a/k,
and Theorem [ gives us the desired result.

Theorem VIII (C ontinwous Case). 1z is & stochastic variable with
a density function f(z) and if 2 = ka, then 218 a stochastic va;iablg}
with & dengity function g(2) = (/R (e/E). O

The inverse funetion x(z) = z/k; so 2'(z) = 1/k, and/phis result
tollows from Theorem 1L. \
36. Representation of Physical Situations \\ /

This section consists of a brief digression iﬁ:i}le form of some exam-
ples of a procedure which is not very p}‘@dt«iéal but which might help
to illustrate and emphasize the fact thal fundamentally a stochastic
variable is a function. The method of Chaps. 2 and 8 is by far the
most common in the 1-epresenta‘ti’dn'of physical situations. There we
let the valies of the coordipate variable (ot variables) represent the
physical events in a nafur fway and then chose & density function (or
probability function) th% would properly deseribe the probabilitics.
Now, suppose we gt)\'ai"ft- from the poinb of view of the axioms and the
definition of & stéchastic variable (Definition 2, Chap- 2). That is,
let us just publgut of thin air an event space with a distribution fune-
tion sutisfying The axioms. This space may seem t0 have no particular
conncectiaw with any physical situation, but let us try o construct
stouhg.s}ié variables {i.e. functions) over it that will represent the
evouls in u physical gituation.

Tor the remainder of thig section, let the event space e the unif
interval 0 < z < 1 with the probability of each gubinterval defined as
its length.  That is, Jeb the coordinate variable © have 2 density func-
tion jdentically 1 in the interval, gero outside. ' _

Over {his event space let us find stochastic variables which describe
the physical situations in the illustrative examples of Chap. 2. Inthe
diserete case the best way to do thisis by inspection, keeping Theorem
1 in mind.
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1f u(z) is the total thrown on two dice, we have:

mT-- ' -

I -_—
10 —_—
9 - ———
8_ ——
7 it
38 —_— O
A ¢
5 .'\{\...\,
—_— e\
4[' Y
3 .":Sv&"
44
z .“\\\,
RS
l|l|r1|||l|;||1111||l||l|111x4\%.,{‘.|l| "
N 5 21l €, ¢ /30 35 35
3% 36 3 i 36 %}\\as %‘s ET
1o, 1-1‘.“‘3
* \/
Tor the balls drawn from the Wn,Wo have:
i «:”“
O3
EHe {\
.\:\‘\}
3 _—
k { »
'y r‘z
N
x;\~¢ N I
oY
\.x
O
‘:\’; Il.|l|11t||11'| ¥
AN 5 r
~O 15 15

\ 3 Fia. 156,
"4
To get the continuous cases, We note that according to Theorem 15,
since f(z) = 1, we have
gluy = fz' (Wl
Now, if we fix it so the signs are right, we shall have
gla) = a'(w).
That is, the density function for u is the derivative of the inverse fune-

tiontow. S0, if welookin Chap. 2and find out what densiby functions
we want, to get the funetion w we integrate and then take the nverse.
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sEe. 36)
in the problem on the bombardment of a hemispherical screen, we
want
g(u) = cos U,
therefore
() = ﬁ)u cos ¢ df = sin %,
and

u{x) = aresin 2.

The picture:

Fra. 16, .3
“T
In the radium atom preblem, We wsaﬁ‘h

g (I,LL\”’ ‘Le"““

therefore
x(u)s\ &f et dp = 1 — &%
and
Q}" u(x) = -7 ! yog(i — @
o )
The pmtur%\‘v v
.(\ )
D

R
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Earlicr in this chapler we mentioned the variable (v — (L/)F in
conneetion with this problem. From the above represeulation for u,
we find this very quiekly:

o) = ( - }) L Tlog(t — @) £ 1P

This function is shown by the dotted Jine in b, 17,
On applying Theorem 1V to the stochustic variable p(), we get
"\
afpy =1 — grEV e N

W = o - e

1. r -
RV 2%

S—
2 v & M

The minus sign in the exponent applies to the hl';maii’i.hs.tt woes all the
way out. The plus sign applies Lo the branch Qi goes only o [IRS
Since fle(@)] = 1, we gob g(u) by merely fakindthie proper values of
l' (@), From O to 174 we must add Pig B0 pxponentiols to et a
hyperbolic cosine. TFrom 1/k% to o= \\'Q'Yu\x.\-'u only 1lic pegalive oxpo-
nential.  This gives us the same resulite had before:

~ S

0 for ¢ < 0,

k \ 1

— cosh(k v for 0 < v < 3

g(”b‘) = {e \/{ ( \/ ) .IC“’
AP D MR vy > L.
\§ .t.,e forv > 15

37. Sums andg B;d&ucts

#

The gcr}c;l‘a\l“subjcct of functions of stochastic variables ig one that
coulid \\\-‘Q{ oecupy an entire book. The individual values ohserved in
a sampling process are stochastic variables, and the statistician 19
intérested in all kindg of functions of these variables. We shall nob

\@t‘témpt to give 4 representative discussion of sampling distributions
hero. Suffice it to say that a great number of problems in mathemati-
cal statistics are concerned with specific examples of the vperations
suggested in Theorems I to IV.

In probability theory proper, however, we frequently want to deal
with the sum and the product of two (or more) stochastic variables.
Any sueh combination of functions over an event space is, of course,
just another function over fhe event gpace.

We have already seen several sums of stochastic variables. Ip the
example of the two dice (as treatced in Chap. 3) we found the sum of
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the two variables to be significant. In the stochastic variable repre-
septation of Bernoullian irials we used the sum of » variables.

We have not looked at any products yet, but the principle is the
came.  Only the details ave different.  In the problem of two dice, the
cvent gpace 18 a SQUArE array of 36 points. Now, we let u = xy, and
(sce Theorem T) pick out the sets E, for which % = a:

N
\ Y Fig. 18.

+8 )
S0 we have the probability function
u:l.\"’z'34568910
gt YVabo%e Zss 34 %o 56 Hhe s %46
w2 13 16 18 o0 24 25 30 36
9@%'%6 34, Y46 396 246 246 e 46 YEs
By ~r1ié£ns of Theorem JL or 11T we could (f we could integrate every-
tk{flﬁg) find the density function for the product of two confinuous varl-
abls. Fortunately, most of the work in the theory of probability can
be carried on without finding these density functions. It will a.ppea,r
later (see Chap. §) that the moments of a stochastic variable give us
most of the information we want, and these moments can frequex_ltly
be found for sums and products without getting the density functions
for the sums and products themselves. The point we want to m'ake
here is that the sums and products of stochastic variables axe just
other stochastic variables and have their density funetions or proba-
bility functions whether it is convenient to find them or not. 8o, when
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we speak (a8 1n Chap. 8) of

n

pfr{aé ingb}

i=1

we are just talking about the probability of & pair of inequalities on &
stochagtic variable, no matter what means we use Lo evaluate such
probabilities.

"There is one mistaken picture of sums and products that the student
should be warned against. We have seen earlicr in this chapter ¢hat,
it we take the unit interval with a constant densily function a3 the
event space, we can describe a large variety of physical sitg'a\tiﬁns by
means of functions over this space. Now, why not take twe functions
over the unit interval, multiply (or add) them togethcﬁi:iéint by point,
and call the result the product (or sum} of the two?{ In the case of the
two dice, this would give the product the values 104, 9, 16, 25, 36, with
probabilities %6 each—something completel ~Qifferent from what we
got above. The fallacy in this interpretg\ﬁt)n of sum and product s
that it overlooks the fundamental idelef Chap. 3 that two or more
stochastic variables are used to desgﬁb'e' compound events and that o
joint density function is called foi~to give probabilities for all these
compound events. When wepith the twwo stochastie variables (func-
tions) over the same one-dimensional space, we do not represent all the
compound events at all, {The representation of x 4+ y and Ty as the
sum and product, re;@cti’vcly, of two functions over an event spact is
not this \, :

r¥

Fie, 19,



sEc. 87] MORE ABOUT STOCHASTIC VARISBLES R7

but this

uix,yl=x vlayley Ko

wliy)=xty i"‘< 2ix,yle 2y
N T
.\\‘.u Fra. 20,

If, in the ahove pi\'cﬁufe of the variable zy, we impose the restrietion
¥ = x, we get t-l':l,(];}arabola indicated by the dotted line, Thus, if the
variables are medessarily equal, the produet xy reduces to z?; and the
three-dimepsienal picture may be replaced by a fwo-dimensional one,
The student should note the distinetion between ddentical stochastic
variables and equal stochastic variables. Two stochastic variables are
idehtigal if their marginal Jistributions are the same, but this involves
no particular dependence of one on the other. Indeed, in many appl-
eations we have use for identieal variables which are completely inde-
pendent. Equal variables, on the other hand, have all points of their
joint distribution on the line y = &

As a cage in point, let us consider variables z and ¥, each of which
vepresents the result of throwing a single die. Here each of the varia-
bles z® and y? is the product of equal variables and so assumes the
values 1, 4, 9, 16, 25, 36, with probability 24 euch. The variable ¥,
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on the other hand, is the product of identical but independent variables
and has the probability funclion given at the start of this section.

a8. Convolutions
Let 2 and y be independent stochastie variahles with density fune-
tions f(z) and g, respectively. Then
olay) = J@aey)
is their joint density function. Let F(x) be ihe distribution funetion

for x; that is, 2\

priz €1} = F(t).
Then, by (d) of Theorem IV, Chap. 2, ¢

F(x) = flz). N

Now, we wanb to find the density function fonr .tlﬁq’\"“:winl:le x4y
Tirst, we note that the set of points for which A\kY = u i the lower
left half plane (shaded in the diagram). (N

&
¥ ¢ \

K ~’:f'~'~:::“

N\

&)

SN A

x..\’:'
N :,\\ Fia. 2L
T{r@iéfore, the distribution function
~ e = priz +u < ¥

is the integral of wlx,y) over this shaded area:

A = [, [ i@eds dy
= [ Flu - vy

The required density function h(w) is the Jerivative of H; s0 W¢
diffeventiate the above equation Wwith respect 1o U This ealls for
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differentiation under the integral sign—a step that requires justifica-
tion. However, we shall skip that part of the proof and proceed to
differcntiate. This gives us

hw) = [, fu — Dewddy.

Clearly, we could have integrated in the other order and obtained

nw) = [, olu — @@

The two {nceessarily equal) integrals obtained here define what js:

called the convolution of f and g. Frequently this result is written

gymbolically O
h=f‘4= '8 "(':‘:

These resulis may be gummed up as follows:

Theorem IX. If x and y are independent stoeljgs'tic variables with
density functions f and g, respectively, then“i}ae stochastic variable
w = ¢ -+ y has the density function O

) = F gy = [ fou — iy = [ ot =

For example, suppose & a?ﬁ are chosen independently and at ran-
dom between 0 and 1. R]{(eﬁf

oy (1 for0 <z s,
A° ) - 1 for0<y sl
‘§ g\ 0  otherwise.
Thereﬁo{é{"
m\J
\™ B! foru— 1<y S
N\ flo —y) = \ 0  otherwise.
o, for0 <<l
_ 1 for 0 S Yy :<— ,
Flu — Pely) = { 0 otherwise;
fl<u<s?

{1 foru—125¥5L
flu — wgly) = [ 0 gtherwise.

Tor all other values of %, Jlu — gly) s identically zero. Therefore,
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Luldy——-u for0 €< u <1,
_ 1
f(u)*g(u)‘ L_lldy=2—u forl < u <2,
0 otherwise.
The picture:
Aful)
'f -
&N\
& \t\'
;,.\\ >
W
/ ol rat & 4
\::\\\'
Fio. 22. v

For cortain disercte cases we get somet.h';ifi}g that looks like a con-
volution directly from Theorem 1. Aptarding to that theorem, h{w)
is the sum of all values of f ()g(¥) fqr: Which z +y = w. Clearly, we
can organize such & summation bysettingz = v — ¥ and summing on
y that is, \y

<

R 2 [ — 16,
RO
the summation take&\'{g{vér all pertinent values of 4.
Tor example, suppose
<& @) = "Caprg @ =032 )

Kt ) = O = 0,12
Of courﬁe‘i‘j}ﬁs mesns that z and y are cach the number of successes i
n Begq‘@}ﬂlian trials; so, obviously, # + ¥ is the number of successes in
2-@4’&%515, and
.»\ W h(u) — anu.puq2n—u (u = 0, 1, 2, .- . 2n).
\However, let us verify this by the methods of this chapter. Here

hw) = ) fu — 9)9)
"
= E ﬂcu_gpu—yqn—u+y n(jyp'yqn—y
¥
= z ﬂcv ncu_ypugﬁn——u

¥
= rp“qﬂn—-u z ﬂCU “Cu_.;.:'

W
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For u < n, the summation is from 0 to u; and Prob. 23, Chap. 1, gives
the result immediately. For % > n, the summation is from u — n to
n; and the gubstitutions z = n — ¥ and v = 2n — u reduce this to the
previous case.

39. Normal Distributions

The so-called normal, or Causgian, distribution is the one determined
by a density function of the form

N (s—a) i/ 202 .

1
g(z) =%

1f we make the transiation ¢ = 2 — &, We find from Theorem Vl\ fheat
the density function for z is « O
— = ! 2/ %% Y
flz) = ¢z + @) J\/z;e R

Though the first form given above 18 usually regaxded ‘as the general
definition of the normal distribution, we shall @l\g@\)}s assume that the
transiation has been made. Thus, when wpfsp‘éak of a normal dis-
tribution, we shall mean the simpler form ix \which a = 0. The signifi-
cance of the constant ¢ We shall see inyGhap. 6. The importance of
thig density funetion in probability? $heory will appear in Chap. 8.
Tor the pregent, we wanb to studydan important special property of
normally distributed stochasti€ variables that illustrates some of the
ideas in this chapter. .

Befare doing that, howeyer, we should show that what we have called
a density function for .t?le pormal distribution really is one, %. €., that

<& .
A0 [ f@yis =1
The indeﬁnité:hitegral
O a() = f bl e
AN e /2r

is hew '’ function, nob expressible in terms of elcmentary operations.
Like trigonometric functions and logarithmns, its values have been
tabulated extensively, bub this does not do us much good at the
moment. The following trick is ordinarily used to evaluate the inte-
gral over the entire x axis:

w 1 2 1 ® =
: Yy - - i/ 20% —y2/ 2ot o
(f_wcr 21._3 d:t:) ngfh”e dxf-ae Y

1 o -]
- _ /2ot g d
?aro' 2 f —_ f 1 4
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Now, we change to polar coordinates and remember that the clement
of ares dz dy becomes r d7 dé.

g—wo/20? d:z: = f g T dr do
211'
21'
21|- — e’””““‘\ dft = 5 f d =

Theorem X. Any linear combination of two independent normall,
distributed stochastic variables is itself a normally distributed sbe-
chastie variable. L\

N

let = and y be independent stochastic variables :\vijt{lf’density

functions A ¢

At & i

1 3 A\

g#* 2t and P Wkl
a1 '\/i—vr 2{ ’
respectwely, and let w = ax + by. Now, 1etxg o3 azand w = by; then
by Theorem VIII the density functions f@rz and w are

o\
1 g-eitad and’ ¥ e—wgr‘?.ﬁ"‘

a2 "g:° B\/_—

respectively, where & = do1 fmd # = bos. By Theorem V, z and w are
independent, and % = & ’w 50 Theorem 1X applies, and

-] \
BN
hw) = f b ooyt duy
2
\m@
( g2 — 28%uw + gt 4 aip? dw
2t .

On compléhng the square in the exponent, we have

o) o 2
o? + 5° it B2 >?

1@) 2mﬁf . p[ “Sa’8% (’w ot TBE) ~ 9(a® - Fﬁ?)] dw
E ] -7: eXp [— —__u2 - * Eﬁé
V2o’ + 87 2+ . a2

i Bu ]
exp[ 25t w = o F 5 du,
and this last integral is equal to 1; therefore the density function for v is

'\“21,r 7 exp

k) = _._1—___ g—ut2lattpry

V@ + B9
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Thus, %18 & normally distributed stochastic variable with
g=ve+ 8= il + biel

By applying this theorem over and over again, we obtain the follow-
ing result:

Corollary 1. T @1, T2y o« +  T» 810 independent stochastic varia-
bles with density functions
{x) = — g O
) = T
then git\'
n o
= 2 Qils l’:" 3
is1 AN 3
4 &.
is a sbochastic variable with a density function "‘\
h (Tl-) __— :1_:— 9 ‘t)\\;
2r(ed + o+ + ﬂn) N\
DAY 42
;__'_,___.—-—-—_.
e‘p[ S ICEE R +aﬁ)]
where a; = G0 -

N
X
ad

In the case of the so-called crcular nermal distribution in the plane,
the joint density function 15.\

o) = g

O\ 2me
A \ ¥ = 1 e—-v‘ﬂﬂﬂ
x:\. v, 211'0'2

"\6.
whera r = 22253 + 42 Now, the fnct that the joint density funetion
iga Euuct—w}l of # nlone does not make it the density function for r. As
a mat te\. "Bt fact, surprising as it toay seem, in this case r is not normally
distrd uted. Let us apply (@) of Theorem TIIL. Note that the
inequalities t < 7 < 1 + dt define a ring, and it is this ring whose proh-
ability we want. "The probability of this ring is apprommately

1
2 e—sﬂ; Qo2 A
o

where A is the area of the ring. Now, 4 is approximately 2t dt; 80

prit <r <t df) Nif’—‘”"“* dt,
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and {d) of Theorem V, Chap. IL, tells us that r has the density function
r 2/ 0%
fr) = e
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PROBLEMS R\

1. Let « have a density function identically 1 from 0 to.k ~Deseribe
the stochastic variable of Prob. 30, Chap. 2, as 2 function of x.
Ans. u(:z;)\-—l sin w{z — 14).
9. Let  be as in Prob. 1, Describe a variable with Cauchy’s dis-
tribution (Prob. 31, Chap. 2) as a function of 3./
Afs™ u(z) = tanr(z — 22).
3. Tind the probability function fomthe sum of the variables in
Prob. 30, Chap. 3. Ams. (Nt 2 3 4 B 6
WA Me 786 354, M 92
4. Find the probability funetion for the product of these variables:
Ans. T 1 2 3 4 6 9
_ Ry Ko We e Ms M O
6. Find the probiﬁiiify function for the sum of the varisbles in
Prob. 31, Chap. 3.5 Ans. w 2 3 4 3 6
B Yo ¥ 2% ¥ Mo
6. Find t}@ ‘probability function for the product of these variables:

A& Ans. w 1 2 3 4 6 9

P\ Mu: Mo ¥ ¥ 15 26 Mo

s Wind the probability function for the sum of the squares of these
’}{?.f‘i\ables: Ans. w 2 5 & 10 13 18

/ Ru): Yo ¥ ¥ ¥ K Mo
‘ 8. Lot olzy) = = + y in the unit square 0 L ¢ < 1, 0 <y <3
with ¢ = O elsewhere. Find the density function for = + y.

Ans, 1l for0 €< u <1
hiu) = § 2u — w2 for1 < u < 2,
0 otherwise.

9. Using the joint density function in Prob. 8, find the density
function for xy.

Ans, h{w) =2 —2ufor0<u<1,h=0 otherwise.
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10, Let z and y be chosen independently and at random between 0
and 1. TFind the density function for zy.
Ans. Rh(w) = log(1/u) for 0 <u <1, h = 0 otherwise.
11, Let = and y be as in Prob. 10. Let % = max. {z,y). Find the
density function for u.
Ans. h(uw) =2ufor0 < u<L,h=0 otherwise.
19. For the same z and ¥, find the density function fory = min.(x,y).
Ans. k@) =2-—2ufor0Lv <L, k=0 otherwise.
13. Find the joint density function for the variables « and v of Probs.
11 and 12. Note that » and g are independent, butb and ¢ are not. ,
Ans. oup) =2fx0<v <4, 0 < 4 < 1, ¢ = 0 otherwises
14. Tet z and y be independent and have density functions O\
PR
ey | e forz > 0, ~ {getr  for y =0,
fw) = { 0 forz <0, o) = { 0 fcu;‘g"k 0,

respectively. Tind the density function for & -+ ¥, .“‘}\\

Ans. hlu) = 7 cf_ﬁ - (¢—ov — ¢~f%) for u ?\\03 h=0foru <0

16. If « = B, the answer to Prob. 14 ig~meaningless. Find the
density function for v in this case. OO
Ans.  hlu) = a®ug &y foru > 0,k = Oforu <0
16. Let z and y be independent, andict each of them have Cauchy’s
distribution (Prob. 81, Chap. 2). $ind the density function for & 4 -
O\ Ans.  h{w) = 2/=(4 4+ ud).
17, Let z and y be indepgm}ent, and lct cach of them have Poisson’s
distribution (Prob. 23, Ghep. 2). Find the probability function for
2+ y. Hint: Sce Prob. 21, Chap. L. Ans. h{n) = (20)*e¢/ul.
18. Lot z be chosenat random between —~ 1and 1. Find the density
function for 2. /)0
As. h(u) = 1/2 Vufor0 <usl b= 0 otherwise,
19. Lot hive the density function fl@) = e=forz 20 withf =0
for ¢ <o&" Find the density function for 2%
AN Ans. h(w) = (1/2 /w4 for u > 0,h = 0 otherwise.
%0. Compute the first two derivatives of the density function
(1/5 v/ 2m)e=%, Find its maxima, minima, and inflection points,
and draw a graph. Ans. Max. at 0, no min., infl. pts. at +o.
21. Let & be a normally distributed variable with ¢ = 1. Find the
density function for 2
Ans. h{w) = 1/ 2muwye/t for u > 0, h = 0 otherwise.
29. Let = and y be independent, and let each of them be normally
distributed with o = 1. Find the density function for =z + ¥
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Hint: The density function for +/2% + ¥* 1s found in the text (See,
39). Ans. h(u) = Yge2 foru = 0, i = 0 otherwise.
93. Show from Probs. 21 and 22 that

f“ dr

——— T ==

0 \/:c(u — z)

Hint: Comparethe convolution for Prob. 22 with the answer ohtained

by other methods.
24, If z is normally distributed, find the density funchion for e®.

Ans. hlu) =

om0 fop g > 0, B o= (1 opherivise.
o v/ 2% ' RAY,

95. The magnitude of a certain physieal vh;um-ls\.ri;a‘.lie\-. {such as
height, weight, and velocity) is normally digtributed c;}((fi"'«t I members
of a certain large population. An experimenter ¢ Wises members of
this population at random and measures thisalarieteristic fur cach
member chosen. His measuring process is s;{m(r(‘ptihlu 1o crror, and
{he probability distribution for the crrm{"';i}: aleo normal and inde-
pendent of the magnitude he is measusifgy” Show that there i% o nor-
mal probability distribution for the, redult of a given measivement.
Hint: Apply Theorem X. o0

_

26. Show that, if there is a wormal probability distribuiion for ihe
results (note that this is not quite the same as to say that the nporegate
of results form a normal f]\%quency distribution) and i the law of error

is normal and independent of the magnitude being measurind, then
fhere is a normal P}'&)}bility distribution for the true meusurement of
an item chosen afrandom from the population.

27. Show thabAl z,, 22, . . . , 2. are the values of n independent
samples drg,i?n" from a normally distributed population, then the sam-
ple mfiax\\ .

N,

Ay u*IEfC
) —?—1 i
QO

‘ i=1
18 a normally distributed variable,



CHAPTER 6
MOMENTS

No study of stochastic variables would be complete without a dis-
cussion of moments, Not only are the moments of a stochastic varia-
ble invaluable tools for the statistician, but some knowledge of them 1s
necessery for an understanding of the Iimit theorems (sec Chap{8);
which are the core of the calculus of probabilities ilself. N\ ©

The student has probably first heard of the term “moment¥ in con-
noction with the law of levers in elementary physics. l\iIc;»s?t first-year
culeulus courses attempt some further discussion of the'idea, but still
the terminology of physics (centroid, moment of inedtis, ete.) is ordi-
parily used. The student may therefore get the jdea that a moment is
something fundamentally connected with rotafing rigid bodies.

To the mathematician moment merely pieans a Sticltjes integral of
5 certain type. Boin our discussion it means either integral or sum as
t+he case may be—sce See. 13, The mdi;’leﬁts of the physicist are exam-
ples of this type of integral. o gtrél’t-hosc of the statistician, and it 18
these latter that we shall be inpercited in here.

40. Moments of a Stoch q@a%aﬁabm

Without Stieltjes integrals, we necd scparate definitions of moments
tor the discrcte and gofitinuous cases.

P\
Definition J¢\The kth moment of the stochastic variable x about
the point @\is\\ﬁ’eﬁned as follows:

((L}splééé-rete Case
' Y (z — )y fla),
zin 8
{(b) Continuous Case

f _mm (z — o) fx)de.

Tf (2) involves an infinite series or if (b) involves an improper integral,
this series or integral must be absolutely convergent. Otherwise, we

say the moment is not defined.
97
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This condition of absolute convergence is not, of course, automati-
cally satisfied. Our chief concern will be with the formal manipulation
of certain moments; 80 We ghall make the blanket hypothesis that,
unless otherwise noted, all moments mentioned in subsequent theorems
are assumed to be defined. Aswe pointed out in Chap. 8, the order of
integration may be changed in an absolutely convergent multiple inte-
sral; 50 We shall continue to do this as a matter of course.

To certain moments of stochastic variables the stalistician gives
special names and attaches special symbols. The first moment about
gero is called the mean, OT expectation, and is denoted by E or E@h—

whichever symbol scems more convenient. In symbols: .
‘O
) ~\
Blz) =% = f_ _zflx)de. AL

7 0\ ?
The second moment about the mean is called the 'L'{I‘?:fgblcc, or dispersion.
(We shall use the former term exclusively.)} IKis Jdonoted by var(z) or,
frequently, by ¢* In symbols: \*\ g

X

var(z) = o* = [_”g.“(fct’-' )Y (w)dz.

The positive square root of thejj;?z;ﬁance is called the standard deviation.
Ag one might suspect, it igzdenoted by o.
\)

41, Example—-Norm{f\‘Ditstributions

TFirst, we might take a look at the moments of a normally distributed
variable. .§€Gu}djngly, let

& 1
\/ (x = —-I’f2al‘
Q & = 5"
Now,"
\M\\}“ E(m = __1:___ - —z37 00k _ - _L _ p1s9at o _

—w® ‘\/E.l‘ .!—a:

20 the interesting moments are those ahout zero. Let us denote by
M, the nth moment about zero. To find M, in general, we take

xne—z"ﬂa! dx
and factor it as

{zm="){(ze 2 du).
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Then, integrating by parts, we have the recursion formula:

1 =
PRVE .

foid e—-:s!f%! dI

M.

'
P
i 18—141 el

G‘(‘ﬂr - 1) i n—2 ot/ DG
‘\/ET; -_ + 27" - = * ‘ dx

O’g(ﬂ - 1)Mﬂ_g.

1

Q.

We know irom Sec. 39 that Mo = 1, and we have just seen that M1 =0,
Therefore, it follows that all the odd moments are zero, while the\'é\feﬁl
moments run o2, 3g4, 15¢%, . . . with the moment of order 2n giveén by
1X3XB5XT-++ 20— 1™

[n particular, we see thab var(z) = ¢?%; so the con dnt o, which
appeared merely as a parameter in our diseussion of idrmal distribu-
tions in Sec. 39, is actually the standard deviat-im\of the variable x.

AN

42. Example—Cauchy's Distribution N\

it. would be fallacious to argue in the above example that the
meraenTs are zero because the densityfunction is symmetric with

ﬁS‘pec' 50Tt is True that for anodd moment This mives a first

~guEdratt~arca’’ and & congruent: IHird quadrant “srea.” Thercfore,
if the moment exists, it must helzero; but & doubly improper intogral is
not absolutely convergent ,uf}ﬁss it is finite at each end. If both the
areas menfioned above afe infinite, we say the moment does not exist.

As an example of this)wort of thing, consider the stochastic variable
x with density funetion

7\ 1
) Z”\.“ f(x) - 7{'(1 + x2)

Thisis ug;ﬁaﬁly referred to as Cauchy’s distribution (see Praob. 31, Chap.
2). Note that

b 3

o 1 1 .].-ﬂ‘ -_1 E_ -E _
f_wﬂ_—-———(l_l_xz}dx_;arctanm\_.ﬁ—;[2 ( 2)]—-1,

as required. However,

L]
?

—ww(l + &%)

and this integral tends to infinity on each end. So we say the first
moment of this stochastic variable is not defined.

f d dx =%log 1+ =)
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43. Exampie—The Radium Atom

We have seen (Sec. 14) that, if = 18 the time of disintegration of
o given atom of radium, then x is & stochastic variable with

Le~t= for z > 0,
flo) = { 0 forz < 0.

&0 in this case we have

EG)y = J;m kxe ™= dx A
= -—xe-kaﬂ \: + J;w 8—)‘:5 dx r:\‘:\.
— “1 k’lm \“\' “
k o N
. 1 '.'\.
Tk )

Our interest (in Chap. 5) in the varable [:z':—f\ﬁfk)]f stems from the
fact that x\ e

@ 1 a AV
var(z) = f k (:z: - —) g Frdg™
0 k/ o o88
2 ’.:‘@ ]
- ( - %‘C) ‘?i?f \’n + fn 2 (‘B - }—) e ke de

1

1l

“\ £ w0
R g
v i) i ] k
= L:‘\_zn —_ 2 —kz )
s e o
>1 2 2
™ k?

\it\;ié'worth noting here that, while £ = 1/k,

1 17k R&

pr ‘iﬂ < —.} = fﬂ ke~*=dx = —¢*" IU =1—¢1 =03+
This should dispet any false notions that priz < £} ought to be g
The expectation has many important properties, but this is miot one of
them. For a continuous case (such as we have here) the number &
such that priz < o) = 14 is called the median of the distribution. 1n
the case of the radium atom this is found as follows:
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j;uke"“’ de = 1 — e = 143
e = 333

44. Expectations

We saw in Chap. 5 that, if = is a stochastic variable, then in general
w = u{x) is also a stochastic variable, 8o % has an expectation given
by Definition 1: _ A~

B = [ uglwdu,

where g(x) is the density function for . We spent quife sorfetime in
Chap. 5 finding these density functions from the original dengity func-
tion f(z). However, this sometimes turns out to be yuitea chore, and
one of the nicest things about expectations is that W& do not have to
find g(w) in order to find E(u). This observalion holds for functions of
soveral stochastic variables as well as for fungtituis of one. A general
statement might be given as follows: x\

N
2\

Theorem I. If the stochastic varialiles z1, 22, . « - ; Zu have a joint
density funclion (joint probabilityfunction) e(z®y . - ,2) and if
u = uley,2s, . . . %) 1880 stochastic variable defined over the event
gpace of the x’s, then 9

E(w) = f:., f_: . ,Sg;a(xl,xg, o aelane, o - yTa)dey doe
) - day,

[E(u) = ZE“ . Eu(xl,xz, SRRy 121 €. P ,xﬂ).]

...\’{:'1 -

Importa'r}t as this theorem is, we shall not try to give a general proof
of it.‘.\'lj‘ﬁ'nd&ment-ally, it involves the relationship hetween g{u) and
e@ory . . . ). In Theorems I to IV, Chap. 5, we got about as
mubh information on this relationship as we can get in an elementary
course. Our treatment of Theorem I will be to show what can be done
on the basis of these four statements in Chap. 5. The student should
bear in mind that, while our proof is incomplete, Theorem I is true in
general,

First, let us take the discrete case. By definition

Ew) = ), (o).
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By Theorem I, Chap. 5,

gla) = priv = al = Z oLy, Te, - - - V) -

w=d

EBluy = Ea 2 olx,22, + - - JTn)

u=a

Ho

This is the sum of all terms we, grouped according to the values of w.
Novw, the sum called for in Theorem I,

22 C e Eu(a:l,:t:g, L TaelenEs, - cEuls R \
o T “n AN
is the sum of exactly the same terms; only this time they are prouped
according to the values of the x's. Therefore, onc sqm"fi«s merely a
rearrangement of the other. In the case of a finite’shm, these are
obviously equal. In the case of an infinite series,glic¢ requirement of
absolute convergence guarantces that the real‘lgngement of the terms
does not change the sum. o

In the simplest continuous case (i:hgbﬁ"}c)vered by Theorem LI,
Chap. 5), the prooi of Theorem I amourﬁts’to a simple change of varia-
ble. Tirst, let us recall that in thiscise both u(z) and its inverse arc
single-valued. Furthermore, xﬂ(‘u}v Has the same gign for all «s; that is,
|/ (w)| = ka'(w)—the same wgn applying everywhere. Btarting,
now, from the deﬁnitioqan expectation and applying Theorem T,

Chap. b, we have
E}h\} = f :’m ug(uydu
Q¢ = f_: uffe(u)lla’ (w)|du
't\" + @
\O" = [27 ufle e ds,

the }jm’it& of integration being reversed if =’ is negative and remaining
th? “pame if o' is positive. Now, the substitution u = %(z) either

Steverses the limits of integration again or leaves them alone, according
to the same criteria; therefore

j_“’m uf Lol (w)|du = f_‘: w(x)f (2)dz.

Let us now al:.mndon the idea of proving Theorem I and turn to some
examples that illustrate that it really does work in cases covered by
Theorems III and IV, Chap. 5. We saw in Sec. 39 that, if

1
olx,y) = 5 (=2
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snd r = Vet 4 ¥7, then
) = re=2,
Therefore, by definition
B(r) = [0 * gt g,

By Theorem I
E(r) = f f % 2T Ayt e e dy dy.

Te reduce the latter to the former, all we have to do is change to polaf

coordinates: A o
A

2 L]
i ;
E() = L e grds O
0=f, , gremraa (O

%
S

= 2 r2 s p R N
- T g go
= 1] 211’ d ’ ..,'\\’

= 72 g2 dr. \
J A
7 $ Y 4

To illustrate the eases covered by Theorem I,\'; Chap. 5, let us take a
very simple example. Let QO

1 for ;1~ <z <1,
-_f (@) = 10 qtherwise,

and let N
{*u = z%
By Theorem IV, Chap. 5,, ()
L\
(u)_zi._l__ -1
N kbR
{Note that wg\‘é}})ﬁblcd it to take care of both branches.) So, by
definition, ,§w’

A\ 1‘\/;: 1 \1 i
“"' = — = % = =
A E(u) fo 5 du W =3
Byq}he“o"rem I,
1
Elu) = f_lémﬂda: = %x“

1 1

3

The formulas in Theorem I are often given as a definition of expecta-
tion. This is eertainly the easy way out, because Theorem I gives the
form from which expectations are ordinarily computed; and using it as
a definition seemingly eliminatcs the necessity for all explanations.
However, without Theorem I, such a definition is ambiguous. From
the considerations in Chap. 5, we see that a given stochastic variable
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Corollary 1. If ®4, 3 .. ., % are stochastic variables and
@y, dg, - - - 5 On BI€ constants,

E(i cm:m-),= i a; Bz,
i=1 i=1

Theorem IIT. If z and y are independent stochastic variables,
E(zy) = E@)E(y).

The proof of this is even simpler. If © and y are independent,
elzy) = f@gly); =0
A

By = [, [, sui@edx d ™

= [ e [T ovedy O
= E()E(y). R
A similar theorem holds for n variables, provided that they are
totally independent. The student should note that this is a much
stronger restriction than s requirement that gyery ‘pair of them be
independent. P \4
Tt i very important to note that the addi{fon theorem (Theorem i1}
holds for ol pajrs of stochastic variables while in the multiplication
theorem (Theorem III) we asmlmed}?n&ependence of z and y. As we
shall sce later in this chapter, indépendence is not nccessary for the
multiplieation theorem to hold§ but it very definitely does not hold for
all pairs of variables. \\‘

N

45. Example—Balls in@n Urn

There are 3 ballsin@h urn, numbered 1, 2,3. Wedraw 2 balls and
note their numbels, then consider the expectation of the sum and
product of tl;‘s\:mﬁnbers noted. If we return the first ball hefore the
gecond drz‘g\a-f,}he variables are independent; if we hold it out, they are
not. Letws consider both cases. The joint and marginal probability
funet\'i“oﬁs ‘are easily found in each case. They are as follows:

Independent case:

y gy
3 Y4 % Y 1%
2 35 ¥ Y% %
i 15 (7N " T S
iy % ¥ f@
1 2 3 x
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ean be represented in many different ways as a function over first one
event space and then another. From which represcntation is the
expectation defined? According to Theorem I, they all lead to the
same thing.

There are four immediate corollaries of Theorem 1 that are worth
noting. Ifuisa stochastic variable and a s a constant,

Corollary 1
E(u + a) = E(u) + o

N\
Corollary 2 .
Elau) = aE(u). \ \)
Corollary 3 R N
=K — @)% ¢*¢
var{u) [(w — @)% "‘z\\.
Corollary 4 N

B — @) = 0. O
‘..x\ -

By setting up the expectations of t-hé:sdm and product of two sto-

chastic variables in the form given hyt Theorem [, we obtain very casily

two theorems which are invaluablg'in any work with moments. As

usual, we shall base our proof ob'the assumption that there s o joint

density function. We sh wld point out, however, that Theorems 1

and TIT hold for any joinf Wistribution for which the required expocta-
tions are defined. g

L >

Theorem IL Nz and y are any two stochastic variables,

xt\.w
N B +y) = B@) + Q).

N\

’:i_?h.is‘ proof is very simple.
RS

WV :F;'(x +y = f_: f_: (& + yelzydr dy
= f_.: T f_: plz,y)dy dz + fjw y f“: ole,y)ds dy

= [ ai@de + [ vel)dy
= E(x) 4 E(y).

Repeated application of Theorem II, along with Corollary 2 to
Theorem I, gives
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Corollary 1. If @1, 2, ... ,%a &re stochastic variables and
gy, G2, « - + 3 On BIC congtants,
biJ - i
E (E asxs) = z a:B (@),
i=1 i=1

Theorem III. If « and y are independent stochastic variables,
E(zy) = B@)E(y)-

The proof of this i3 even simpler. If » and y are independent,&

e(zy) = fz)gly); =0 O\
Bap = [ [ oi@easdy (O
= [, af@ya | IRTIOL >’
= E(@)E{y)}-

A gimilar theorem holds for n variables, pf(qided that they are
totally independent. The student should noteéthat this ig a much
stronger restriction than a requirement that/cvery pair of them be
independent. oA\ _

Tt is very important to note that theaddition theorem (Theorem IT)
holds for all pairs of stochastic vaﬁaiﬂes, while in the multiplication
theorera {Lheorem IIT} we assumed sndependence of z and y. As we
ghall gee later in this chappez( independence is not necessary for the
multiplication theorem tK{iolﬂ; but it very definitely does not hold for
all pairs of variables. X

45, Bxample—Ballsiid an Urn

Thete are 3 b@ll\;ln an urn, nurbered 1, 2, 3. We draw 2 balls and
note their nitebers, then consider the expectation of the sum and
product gfthe numbers noted. If we return the Brst ball before the
second/diaw, the variables are independent; if we hold it out, they are
not L&t us consider both cases. The joint and marginal probability
functions are easily found in each case. They are as follows:

Independent case:

y ey
3 34 5 W
2 VAR P T
i % % % %
VO VA L)
1 2 3- &
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Dependent case:

y 9
3 14 7 0
2 4 % 0 14
1 14 0 % 1%
4 Y g fl@)
1 2 3 %

All the marginal probability functions are the same; so in each case
N\
E@) = E@y) = (1 +2+3) =2

Let us find the expectations of z 4 ¥ and zy from theirsprésb}m’bility
functions. 'To get these, we draw the level lincs for # +- yonnd oy

4

< 3
u=x-+Y v—a,{;'\.'"
5 &
’,‘ No/
4 P\ \
} 3 N / 2 3

¥, 23.
According to Theorem I, @hap. 5, the probability functions for % and v

are obtained by adding(the values of o(z,y) slong these lines. So we
have: B\

Independent ésﬂxs;a
w2 3 4 5
\\‘..g‘(u): % 26 % %
R\ Elu) = 142+ 6+ 12
NN v 1 2 3 4
Y e X% % % 35 %
E{y) = %(1+4+5+4+12+9) = 384 = 4.

Dependent case:

u: 2 3 4 5
Fa: 0 % 2% %
Ew)=XK0+6+8+1040) = 246 =4

pr 1 2 3
g): 0 % %
E=2%40+4+6+0
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Perhaps the educational thing about this example is not that the
multiplication theorem fails in the dependent case but that the addition
theorem holds in both cases. The student should note that this is not
mere coincidence, It is a direct consequence of Theorem IT.

46. Example—The Matching Problem

To illustrate the real power of Theorem II, let us consider & more
complicated example. In See. 33 we saw that, if n numbered balis are
placed in n numbered pockets, the probability that » of the numbers on
the balls match the numbers on the pockets is ' Q

n—r 7
1 (—1)"’ '\
r! sl

&=0 “(

By definition, the expectation of the number of matchifigs is

T , n—T (__l)-! ‘. \:
E@r) = 2;7 ET\\
r=0 g=0 .",’

A direet computation of this would befather messy. However, the
total number of matchings is the sum.of the number of matchings for
the individual balls, Now, each ball Tnatches either once or not at all,
and (with no knowledge of whati, the other balls are doing) we see that the
probability of matching fog%@ach ball is 1/n. Letting @ (¢ = 1, 2,
...,nrhea stochastis\{(a;ﬁable assuming the values 0 and 1 with
probability 1 — (1/n)and 1/n, respectively, we have

A\ X

oY o B =
(t=1,2, \\\, n) and

A T
NG r= 2 &4y

”\; 4 i=1
whe\ace

B = EE(:&) !
i1
The variables ; are obviously dependent here, put that does not
affect the validity of our application of Theorem IIL.

A very interesting observation suggested by the above analysis of
the matching problem concerns the experiments to test for extrasensory
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perception. Cards numbered from 1 to 7 are shuffled and then turned
up one at & time. The supposedly gifted subject is placed so that he
csnnot see the cards, and as they are turned, he attempts to call off the
numbers, Suppose a card is discarded after being turned so thatl, in &
given run of n trials, each number appears once and only once.  Sup-
“pose, further, that the subjeet knows this and tries to use cleverness as
well as extrasensory perception by calling cach number once and only
once.  Then, except for ES.P., we have exactly the matehing prob-
lem; and the expectation of the number of correch enllx is 1.
However, the fascinating thing about this problem is (hat we gebthe
same expectation no matter how the cards are handled and o matter
how the subject organizes his calls. The number of corrd’alls inn
trials is the sum of the number of corrcet calls on the ir:ull}-‘idu:l.l irials.
Therefore, Theorem IT applies; and so long as the probibility of suecess
is 1/n on cach trial, the expectation is exactly 130nw trinls no matter
what the nature and degree of the dependence bl the trials may be,
Note, further, thatn + (1/n) = 1 for all n’§;js}it does not even matter
how many cards are used! ~N\

\ 7
AN

47, Variance o)

The first thing we might no}&éjﬁbout the quantity var(z) is that,
according to Corollary 3 to Theorem I, it is the cxpeclation of @ sto-
chastic variable. Therefote) Theorem I applies to give us the result

that, if 2 has a densityaﬁﬁction f(x) and u(x) is a stochastic varlable
over the x axis, then\\

L Varw) = [ 7 u) — alfds.

't\n . . .
For example, in the radium atom problem

K\ - ;
- HEa oru = 0,
) 7w ‘ 0 for uw < 0.

E 2
var(u) = f I;,(u - E) e~ du.
0 k

(see Sec. 43). However, in Chap. 5, we characterized the variable
as the function

N

ulz) = — %10g(1 — )

over the unit interval with constant density funetion, We noted there
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that o -

Lap — l : = ..].'_ [1 ty 1 j— 1 2.
C{u—1) = g lest =) 1
therefore

1
var(u) = L 1_915 Nog(l — &) 4 11* dz.

Finally, we saw that the variable

13
D) )

has o dengity function

AN
0 forv < 0, N\
IG 1 Y N/
———- goshi{k /v for 0 < v £ ™
g = { e~/v (Vo) R\ 3
k I\
gkl for v <33}
2/ Nl
Therefore, 7\
176 g, AT LA
var(u) = E(@@) = fo k —;/E cosh(k A/ vt flm b ;/U g iVv=1 dy,

Of these exproessions for var (u), the ﬁ;‘(ﬂ;ﬁ:i% obviously the simplest. We
merely note the other two by wa.yf’éf pointing out that the points of
view suggested by them are perfééf-ly legitimate.

The characterization of v@(‘é'c) as

S B - 2

together with the g’cidftion and multiplication theorems for expecta-
tiong, leads us p{é;ﬁumber of interesting results.

AL
Theorqr{lt\ﬂf /' Tf 2 is a stochastic variable and ais a constant,

™
N

(a)”\i:\;w' var(z) = B — &
ONY var(z + o) = var{z).
(e var(az) = a* vax(z).

These results follow immediately from the addition theorem and
from the corollaries to Theorem . To prove (a):
var(s) = Bl(x — B = Bla® = I + 7
= E(xg) - 2.’3‘E($) -+ Fl = E(x?) — 925 - 72
= E (mg) - -’32. . .
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For (), B{z +a) =%+ ¢; therefore

var(z + o) = Elfiz + & — % — a)?] = El(x — 2)7] = var(z).
For (¢), E(ax) = oF; therefore

var(az) = El(ax — aZ)?] = Ela*(z — )4
= a?E[(z — 1) = a? var(z)-

The student would do well to remember (0) and (€) in particular.
They say that a translation does not affect the variance, while 2 change
of scale multiplies the variance by the square of the change ,(\ff\sca,le

factor. N
« N
¢‘~:'
‘/i‘heorem\’. Ifxy, 2, . . . , TnaaTe independent, stoghastic variables,
O¢
) m\\.

\
7

var (il I,‘) = il V&I"{}-{%‘; v
H T Y

Let z; = 2; — % Then, by Corollarjr:s} gf Theorem I, 2 = 0;s0, by
Theorem IT, AN

B = 0.
Furthermore, by () of T}ge;&en; v,
X \O\X\{trar(zi) = var(z.),
and since Zz =’§(:i:}:— E) = Za; — Ly,

"\"\ var(3ez) = var(Zxr.).

Thel‘efq@}’i% suffices to prove that var(Zz) = I var(z). Since
B(Zz) = 0,

£\

SEERSVOELDRY
=K (Z 2+ ,Z‘,— z@s)

= ZE(ZE) + E.E(z.-z,-)
= Zva,r(z‘:) -+ E E(z:z;).
H 24

Now, since the 2’s are independent, the #'s are too; so Theorem T1I
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applies, and
E(zz) = BE@)E{(z) = 0

for i # §. This gives us the result we want.

The variance of a stochastic variable is supposed to give some indica-
tion of the “spread” of the values of the variable. An indication of
the way in which it does this is given by the ollowing:

Theorem VI (Tshebysheff's I nequality). Iizisany stochastic variable
and o is its standard deviation, then (

N

- 1 oA
P”'“x”a’izfﬂ}ﬁﬁ‘ v A\

To simplify matters, let z =& — £. This does not alfer the value
of o. Now, we have )

g2 == f:ﬂm 2f(2)dz > ‘L[ ot z'zf(;z):‘iiz;

~N)
> [, 2@
= ttalprilel > to};
and, dividing by #*%*, we have N

1 ’r:'
7 Z‘T}?’Hﬂ > to}.
AN

Tor each £ > 1, there is\\'s;'sfochastic varisble for which the equality
in Tshebysheff’s inequality holds. Consider, for instance, thevariable

) \ A\ 0 i

& 1 1 1

P e k() &

Here g.=u1, and prilzl = 1} = 1/82

T{”}hié, cense Theorem VI is the best general estimate of its kind.
However, to got an example of the equality, we should have to change
the stochastic variable as we change &. Therefcre, for a given sto-
_chastic variable, Theorem V1 is by no means & best estimate for every
value of . Obviously, if we know the density or probability function
for a stochastic variable, we do not need any estimate like Theorem VI
at all. To get prilz — F > o}, we merely integrate (or add) over
the indicated domain. In between these two exiremes, there is the
possibility that f(z} is not definitely known but that there are some
known restrictions on it Several “improvements” on Tshebysheff’s

z2: —i
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inequality have been proved by assuming such restrictive hypotheses,
but we shall not attempt to gummarize them here.

Tt might be interesting to compare the results given by "Theorem VI
with the actual values of prile — &| > to} for the normal distribution.

arilz — 3| = o}

¢ Upper limit for Actual value for
all distributions | normal distribution
-—— —_—— s ——— —— ."\
1 1.00 3174 R
2 .25 04506 2\
3 11 0027 OO
4 .08 .60006 A\

This table shows that Theorem VI does not even gs}n\é close to giving
an estimate of the probability significance of s fora whrmal distribition.
But this argument cuts both ways. Our tab}e also shows that the
normal distribution does not even come clost\id cstimating the possible
vagarics of a stochastic variable. v

48, Example—Bernoullian Trials (0%

In Chap. 4 we saw that a Bgﬁibhllian saquence of trials was repre-
sented by a sequence of stoghastic variables:
O w001
k™
pN N\ filed: o p
For each ¢,
’:~:\.« E(ﬂ:i)=0-g+1'p:p-

The le?& of successes in  trials we have denoted by ».  Wohave
seen thaty

ad
¢

\\ o= E Ty
’l‘l;erefore, by Theorem 11, =
E(ry = ZE{z;) = np.
For gach %, the variance of x; is
E@) -8 =0-¢+1 p) —p*=pll—p) =pg
The Vgri.ables are independent; so Theorem V applies, and

var(r) = I var(z;) = npg.
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The student should msake a note of these results. They will be
necded frequently in later chapters. As we pointed out in our dis-
cugsion of extrasensory perception tests (see example on the matching
problem earlicr in this chapter), the expectation of the number of
successes is #p no matter how the trials are related. The thing that

. makes the study of Bernoullian trials particularly profitable is that for
them we hizve such 8 simple expression for the variance of the number
of successes.

49, Covariance and Correlation

1f z and y are stochastic variables, the variance of each of them/s
the expectation of the square of its deviation from its mean., ghe
covariance of the two is defined as the expectation of the produet of
their deviations from their respective means. That is, AN

4 { ?

covar(ay) = Ble — D = Dk 230"
Now, it follows immediately from the addition th,cg«;m {Theorem 11)
that
covar(eg) = By — 3y ~20F &)
= E(zy) — E@FW)

If covar(z,y) = 0, wesay that z and ¥ ar«e vancorrelated. The following
theorern is now obvious. N

Theorem VIL. A necessazy and sufficient condition that
A
 Blzy) = B@BW)

is that « and y be un’ébﬁ'elatcd.

#

On nonipa.d){fg;\ff[‘heorexns VII and 111, we have the following:
N\
C orolla@;}"l. 1f = and y are independent, they are uncorrelated.

TRwtonverse to Corollary 1 is not true. Variables may be uncorre-
lated but badly dependent. Tor example, if 158 variable with a con-
stant density function fiz)} = 4on —1<% < 1 and if y = 2% then

80
E(x)B(y) = Q.

Furthermore,
E(a;y) = f—l1 %2’:3 de = 0;
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thus z and y are uncorrelated. However, for each value of x, there ig
only one possible value for y; and for each value of y, there are only
two possible values for z. Therefore,  and y are far from bcing
independent.

The importanee of uncorrelated variables in probabilily theory is
that in many instances we want to be able to write E{z) K (y) lor E(zy).
In these instances it is sufficient to postulate that and ¥ arc uncorre-
lated. Theorems depending on this maneuver will obviously hold if
¢ and y are independent, but it is probably & good idea to use.the
weaker hypothesis when possible. This not only gives a theorelically
gtronger thcorem but frequently makes the hypotheses casicr fowerify
in specific instances. O

A further pertinent observation is that if z, y, and 2 zg,ré“unco-rrelated
by pairs, t.e., if >

LS

T\
covar(z,y) = covar(z,z) = covar(y2} = 0,
it does not follow that N

E(zyz) = E(2)EGpB).
Tn Chap. 3 we made an analogous Qbéei'\ration with regard to inde-
pendence of stochastic variables, andthe cxample given there {page 48)
demonstrates our present pointedgd. In that example the variables
are independent by pairs, therefore uncorrelated by pairs; yet

LOEye) = 2,

BQBWER = 1% X 15 X 1§ = 1.

In the proof of ffcorem V we used the hypothesis of independence
only to justif{ tﬁe use of the multiplication theorem. Furthermore,
we applied.4hig' multiplication theorem to only two variables al a time.
Therefc‘n% it follows from Theorem VIE that in this theorem, “uncor-
rela’r-’ec}“'by pairs” will suffice in place of “independent.” Tor future
nggséncc, let us restate the theorem in this stronger form.

\ W

Corollary 2. If &y, zs, . . . , ©» are stochastic variables which are
uncorrelated by pairs, then

while

var{Zax} = T var{z).

Y . - - - » . * .
. The statistician wses covariance in connection with the coefficient of
linear correlation of two stochastic variables:

o covar@@y)
fvar(z) var(y)P*
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In case z — T and y — §are linearly dependent, é.e., if

y -~ § = klz — ),
then, letting @ = & — fand v = y — §, we have

, = E(ku?) _ EE(u?) _k
EEHEFEuIF ~ PEHE@H EETT

the sign of 7 being the same as that of k. The converse 18 algo true;
ie,if jr} = 1, theny — §=hiz— ). We shall not go into the proof
of this, but we should show that in all cases r} < 1. .

Theorem VIIL (Schwars's Inequality). For any stochastic v:@,ri'ziblés

z and ¥, |
(BEGy))? < EE)EWY).

2¥7 3

N
Tor every real constant the variable (az — y)“mi; always nofi-
negative and therefore has a nonnegafive expect-z{t-ion. That is,
9.\

2B (w7 — 2eE(zy) + B (yz)\Z 0
for every o In particular, this holds for* >
L B,
E’l zh)’

and on substituting this valmu.q’“for a, we have
ne :
[E(wy)}g\\ N 2{E(9;y)]2 2y >
LEARE IS, T s 0.
e T + El") Z
The result now £ Ql}&w;s it we multiply by E(=z*) and transpose.

To apply{ﬁ}r?a‘orem VIII to the correlation coefficient, all we have 1o
do is o tr‘,a;nslate the origin of each wariable to its mean; then we sub-
stitut¢ Snto Theorem VIIL divide by BE)HE@?, and take square
robts) The resulting inequality is just exactly Ir] £ 1.

50. Normal Correlation

There 18 one very important case in which the coefficient of lineat
gorrelation gives considerably more information than we have sug-
cested so far.  1f z and y have the joint density function postulated in
Theorem IX below, they are said to be in normal correlation. Such
variables appear in many different conneetions, and we want to develop
“ere » fow of their more important properties.
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Theorem IX. If z and y have the joint density funetion

1 I IS S L
2aa e ‘\/1 —r? P [ 2(1 — %) (0'21 Ty - d%)]

where ir{ < 1, then each. of the following statements holds:

¢(x:y) =

(@) zis normally distributed with variance o2, and y is normally dis-
tributed with variance o},

(b) There exist independent normally distributed variables w&hd
» such that each of the variables ¢ and y is & lingar combination .ol u
and v. S N,

(¢) The constant r in the above joint density function ig the; eorrela-
tion coeficient of x and y. N

(d) = and y are independent if and only if they afe ancorrelated.

The proof of () consists in finding the margipal density funetions.
1f we complete the square in the exponer’(n olx,y), we get for an

exponent NS
- 2_?.‘32;(1_?.2) x_z]
2(1 — %) | \o2 .}{1 ot
therefore - N\ \

@ = [ ety (O
© N\

-1 e——zﬁ;&rlﬂf ?’71—8‘{[} 1 Ay E]d-y
o1V 21 ‘_w oo/ 2r(1 — 1% 21 — r}}\oz o1 |

1 »
= — ;;Mﬂ'lﬁ
VRS
O
Similaxly,

,\\:\. ( ) _ 1 PRy TER
\ 3 . g y . 2 '\/2_17 ]
and (a) is proved.

Actually, (b} follows immediately from considerations of analytic
geometry. Independent normal variables % and v are characterized
by a joint density function of the form

Ke—(mzu.! + B702)

NO“’:'HJ r?tation of the axes always gives the old variables as linear
combinations of the new, and there is always a rotation that will
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rempove the crose-produet term. Furthermore, the condition frl <1
makes the Jiseriminant of the exponent negative:

.—.2_1‘ 2 1 1 .?-2 — 1
() b=t e <0

so the rotation always leads to a sum of squares (equation of an ellipse).
Clearly, a rigid {ransformation like a rotation carries the area differ-
ential de dy into du dy; so we get a new joint density function of the
desired form, and () iz proved.

In order Lo prove (¢) we necd to look & little more clogely at the{
details of this rotation transformation. If o is the angle of rotatien,
we have the relations {found in any analytic geometry hook): \ N

(1) % = 1 co8 & — VS &, N
y = % sin o + ¥ €03 o 7, \
(2) W= cos Y sin e o\
p = —xsin &+ ¥ COS & ¥

%

Turthermore, the rotation which removes the xyi}z&rm in the exponent
of ¢lx,y) 18 characterized by the conditionh N,/

N/

_ g
(3) tan 2a ——E: 0’%
From (1) we {ind that N\

oy = (u? — %) sinfancos o + up(cos® o — sin? &) -
= Lg(u? —-\z@xs‘in 20 + up c0% 2a.

Now u and » are indepéndent and normal; so E(uw) = 0. Therefore,

N\ .
WOL () = 14F(u? — v%) 8 2a.
From (2) we gell
uff;\v 2 = {z? — y%)(eos® & — sin? o) 4 4zy sin o cOS &
R = (g% — y?) cos 2a + 9y sin 2a;
o\

B0 . N
W Elzy) = WE@ — y%) sin 2a cos 2a A E(py) sin® 2o

Transposing, we have

2F(zy)(1 — sin? 2a) = B(x? — y?) sin 2o €08 2a;
that is,
2E (zy) cos? 20 = [E@@®) — E(y?)] sin 2a cos 2a
= (¢? — of) sin 20 cos 2o
Therefore,
Elay) = Yo} — of) ta 2a;
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20 by (3)
Elzy) = row..
This proves (¢).
Ab this stage, (d) is obvious. The joint density function e(zy)
reduces o the form for independent variables if and only if » = 0.
One final remark of interest about variables in normal correlation
ig that the Joel
EC—: _ 2y ’U_; = constant
¢l giog G}

. O\
ave called (for obvious reasons) the ellipses of equal probability.
Equation (3) shows how the orientation of the axes of these ollipses can
be determined from the standard deviations o1 and o2 and the'correla-
tion coefficlent ». \

' 4 B
S 3

REFERENCES FOR FURTHER STUDY.

Coolidge, An Introduction to M. athematical Probability, Chap. VIIL
Levy and Roth, Elements of Probability, Chapy VIIIL.
Uspensky, Introduction to M athematical I?f}!bab-il-it'y, Chaps. 1X, XV.
PROBLBMS
1. Tive dice arc tossed toge'gl}evﬁ,"the experiment being repeated 216
times.  What is the expectation of the number of times exactly 3 aces
appear? RS Ans, 1294s.
9. The face cards,aré discarded from 2 decks of eards; then 1 card
is drawn from cach ’dés ¢, What is the expectation of the sum of the

numbers drawn?,,\J Anrs. 1L
3. Two carg-are drawn simultanecusly from 1 of the decks In
Prob. 2. V@g}ﬁ is the expectation of the sum? Ans. 11

4. Thittéen cards are drawn simultaneously from a deck of 52. If
aces qu}n 1, face cards 10, and others according to denomin ation, find
13{1@ expectation of the total score on the 13 cards. Ans. 89

\'B. There are 1,000 tickets in a certain lottery, numbered 1 to 1,000.
Y30 different winners are picked, what is the expectation of the sum of
the winning numbers? Ans. 15,015

6. What is the expectation of the total thrown on 2 dice? on n dice”

Ans. 7, Tn/2.
7. What is the standard deviation of the total thrown on # dice?
Ans. \/%ID'

8. Tf z is chosen at random in the interval (a,b), what is E(@)7

var(z)? Ans. {a 4 D)/2, (b — @)*/12
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9. Let © and ¥ be chosen independently and at random between
and 1. Find the expectation and variance of # + y. Ans. 1, L§.
10. If » is normally distributed with variance unity, what is the
expectation of 27 the variance of x*7 Ans. 1, 2.
11, If 2y, B2, - » - 2 Tn BTE independent and if each is normally dis-
tributed with unit variance, what is the expectation of z23? the vari-
ance of Tz3? Ans. n, 2n.
19, A Poisson sequence of trials is a sequence of independent trials
in which (unlike the Bernoullian case) the probability of success varies
from trial to trial. T.et the probability of success on the 4th trial ba
p; (failure, g2, and let p be the mean probability in » trials:

N
¢\
n A\

AN, \ >
= ) P N\

1=1 w,\,\’.
Show that the expectation of the number of successes jw' n trials is np
and the variance of the number of successes is AN
R

# \S
2 [ 2N WV
i=1 & :"
13. Two dice are thrown until qn’i"js thrown. Find the most prob-
sble number of throws and thesexpectation of the number of throws.
im> : Ans. 1,6
14. Let = have a Poissc@ distribution; that is, v = 0, 1, 2,3, . .-
with a probability fungtion flz) = & ¢o/z!. Show that
AN E@T) = aB(x + 1)
15. Find the 'eéa}éctation and variance of 2 variable with the Poisson
dist-ribution‘.o§ ' Ans. @, ¢
16. St, Pelershurg Problem. A player tosses a coin. If his first toss
is headé,he wins a dollar. I his second toss is heads, he wins another
dolfar,) For a third straight heads he gets an additional two dollars.
As long as a run lasts, his winnings are doubled each time he tosses
another heads. Any time he tosscs a tails, the game ig over. Y¥ind
the expectation of the amount paid him n 2 gingle game. Ans. .
17. Since the game in Prob. 16 secms impractical, suppose that, once
his winnings reach $1,000,000 by the rules of Prob. 16, the player
receives $1,000,000 for each additional heads instead of having his
winnings doubled cach time. What is the cxpectation of the amount
won under these rules? Ans,  10.96.
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18, Let x and y be independent and normally distribuled, each with
variance unity. Tind the expectation and wvariance of Vat
Ans. w2, 2 — (/2.

19. Let 2 be normally distributed with variance unity, Tind the

expectation of |zf. Ans. 2/
20. Let z be normally distributed with variance unity. Find the
expectation and varianee of e, Ans, oW, et — e,

91. A variable & with the density function

fl@) =

s 2 > 0)

O\
is said to bave a 10gar1thm1conorma1 distribution. Findeshe “Expecta-

tion and variance of this variable. Hint: Compare, Pmb 20 above

% /2

with Prob. 24, Chap. 5. "ms e, et — e
99. Let x have a density function f () = Jges \ 1'ind the cxpecta-
tion and variance of x. Ans 0, 2.

93. Pareto’s distribution is defined by the}dens}t} function

Lo
§(z) = -"Cu( ) for * > Zo

" for z < Za.

Show that a variable with thls d1str1but10n has a moment of order &
if and only if « > k. T particular, if @ > 1, show that
¢ }7(:1:) = ago/{a — 1).
24, Generahze {tﬁof Theorem IV. If ais any constant
\& Ovar(z) = El@ — o)} — [E(@ — o)*

25. Shm's\fmm Prob. 24 that the mean of a variable is the point
about \(hu,h its mean square deviation is & minimum.

ZB:'ﬁse the method of proof of Theorem VI to show thal, if # s
S’Eoﬁhastlc variable whose density function is zero for # < 0, then, for

3 N> 0, priz 2 1} < E/L

27. Show that Theorem V1 is a special case of the theorem in Prob.
26.

28. Show that for any pair of stochastic variables
var(z - 3) = var(z) + var(y) + 2 covar(z,y).
29, Generalize Prob. 28. If T, Loy « - - 30 is any set of n st.ocha,sti(

variables,
var (2 x‘-) = Evar(:cg 3 E covar{m,y;)
H 3 i
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30. Find the coefficient of correlation of the variables in Prob. 31,
Chap. 3. Ans. @,
31. If the joint density funetion for z and ¥ I8 elay) =z -+
0<z< 10 <y < withe=10 otherwise, what is the gorrelation

coefficient for & and y? Ans. — M1

39. Lot @ and ¥ be chosen independently and ab random between
0 snd 1. Yind the correlation coefficient Jfor © = max. (2,y) and
» = min.(ey). IHint: See Probs. 11 to 13, Chap. 5. Ans. 4.

33. Show that, if = is chosen at random between —w and =, sin mz
and sin 73 are uncorrelated when m # n.
34. Show that, if z and y are in normal correlation, then oz and by

are in normal correlation. A

95. For 2 and y in normal correlation and independent, what {s)the
orientation of the ellipse of equal probability? _ N

36. lixperience shows that in artillery fire the pattern ef;hits'forms
an appro<imabely normal distribution with the major axi®of the ellipse
of equal probability on the line from gun to target: iven a record
of a large unmber of hits from the same gun in a.gi\bveﬁ area, show how
Tquation (3), Sec. 50, can be used to detcx"xfﬁ?te’appm}dmately the

direction from there to the gun. « \J
R Y
R\
.\'\\}
&
::\“'
\V
N\
R\

‘“\



CHAPTER 7
SPECIAL TOPICS IN CALCULUS

There are a number of special formulas and identitics which are not
usually included in a first course in caleulus but which are very ugeful
tools in many computations in probability theory. Tt is {he purpose of
this chapter to summarize these. In later pertions of th@s\b\éok we
shall make a number of references to the formulas develd methiore, but
we shall not begin to indicate ail the uses that can Ao miade of this
material. The student wheo is interested in further Aok in probability
and statisties would do well to make the inf ormadidn presented in this
chapter a part of his general repertory. PN
5i. The Beta and Gamma Functions x\

The beta and gamma functions arg'.sbrﬁct-imes called 1Kulerian inte-
grals of the first and second kind,, yespectively. They are defined as
follows; N’

*

(1) Bl S f; (1 — £t dt
(2) \'\ﬁf(%z:) = j; " gt dl.

A little knowlgd:ge’ of improper integrals tells us immediately that
B{x,y) is defing\if'z and y are both greater than zero and that [z} 1
defined if 3»?'\3 In what follows, we shall understand that, whenever
we writo.Bver T', the arguments used satisfy these conditions.

Og,ipjtegrating (2) by parts, we get

o~

"‘\: w4 - _ et P
Q [ erd = " @) [T
which gives us the important recursion formula:

£} Tz) = (z — DTz — 1).

So, starting with the special case

(4) T = fo et =1,

we can apply (3) over and over again to find that I'(2) = 1, T(3) = 2,
122
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r{4) = 6, and in general
6 T{n + 1) = nl

This relation should suggest something of the importance of the gamma
function.

Tn the integral (2) let us make the change of variable ¢ = av where
o is 8 conshant:

T{x) = ﬁ}w o= le~%a do.

Factoring out @7, we have another useful formula:

o :\“\'
6 L) _ fo p=lg do. . 'S\

as \
: N
Turning now io the beta integral (13, let us make ,tlé'gs change of

varigble § = 1 — & This gives us the jmportant symj:het.ry formula:

@ Bzg) = [, (1 — 957
AW
= ﬁ)l g1 — §)’{i’>‘ds

= Bly.2)- 3N
Returning to (1), we make t-he,sg{ﬂz;s;titutions

U 9 1 o du
ir—l_l_u: ’]i‘;}\x-—l_‘_ur dﬁ-—-—-—-—'—'—(l_*_u)z
This gives N\
) S
®) \BEw) - fo e

From (8) \&;q}}a"{fe
\J

O ” Tz + %)
& \ spy=lo— 4wty iy = 7 LA
AY fo e A (S
TN'\G “nultiply each side by @ Ju and integrate with respect to

from O to e, we have

EY " S u“‘l
fo prr—lig— dp f(] g du = T(x -+ y) fﬂ Wdu

Applying (6) to the second sutegral on the left and (8) to the infegral
on the right, we get :

P )7 v do = T+ 9BUD
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So, from (2) and (7), we get the important refation between I and'_r;

_T@r®),
(9) B(x;y) - F(.’.C + y)
T IE, in (9), we Teplace B{z,y) by its integral expression (1) and make
the change of variable

t = cos? P, di = 2 cos § sin ¢ d9,

we have 12
I'(z)T(y) " g ZeL{a %1 J0-
T@ ) =2 . (cos 8)2(sin 0)™—1 df; A
hence, setting = ¥ = % and noting (4), we have L)\
o 4 .\
[rear [ (1)] _ f "0 = r ol
NN R VA Bl P
Thus, '\'\.'
1) (%) = V.

On writing the integral (1) for B(z,z): A\
Bz,x) = Ll (1 Q__f:bz—l dt,
we see that the integrand is symmetuie about £ = 14; so we can iwrite
Br2) = 2 ¢ (L~ 0
The change of variable L
AN )
E= 40— V), Ml - ) = =), =
then gives N\
:,’\B(“x,x) = 212 j;l (1 — s)=ts ds
”\x:\ = 21-—'2:]3&:}%)_

If, in t'h‘is\\eﬁ_'ilation, we transform the beta functions into gamma fune-
tiong by means of (9), we have the formula of Legendre:

\m}? | oIS = 2T + 15).
2. The O, o Notation

A very useful tool in analysis is the so-called ““big 0" and “little 0 "
notation. “If 3= y(z) and some limit operation for x is understood
{say, x — ), then o(y) is used to denote a funclion 2(x) such that

lim £ = 0.

O0(y) 'iS used to denote a function 2(z) such that z/y is bounded for 2
sufficiently large, These are gemeric notations and do not denote
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gpecific functions. This makes them very useful. for Jeseribing
remainder terms whose specific values we do not care about hut whese
asymptotic behavior is important. '

“In particular, o(1) means a function which tends to zero. Several
special properties of (1) functions should be pointed out. “ Tirst, the
sum or difference of o(1)'s is o{1). For expenentials and logarithms
we have the relatlons

log[i + o(1)] = o(1);

e = 1 4 o(1).
The reiation f(x) ~ g{@) is an important one in analysis. 1tis read \
“{(z) is asymptotic to g(x)” and means, by definition, <y
_ _ A\
fm 18 = 1,
glzx) 7 \ 2
Ciearly, this may be written A\

fay = g@ + oM (N
)

log f = log g + oW L
We shall frequently be interested in ’ph(i;siéymptotic behavior of
expressions of the form (z + a) loglz + sz — ©. 1$ will simplify
matters if wo figure this out and reqe”tji;l the result now. From Mac-
laurin's formula with remainder, wa find that

log(l ¥®)' =2+ 0{#%)
,{

as z — 0; therefore, as @ 4(\06’:

(& + o) loglz -}-b); (@ + o) log® (1 + %)
N/

or

\\\" = (¢ + o)y log 2 + (z + a) log (1 + E::)
’737’ _. @+ alget &+ ) [% + O(w‘z)]
~O° &+ @) log &+ b+ 06 a0

S0 let’us list for reference: N _
(1) (z + o) loglz + 0} =2 log z -+ alogz + b+ o(1).

The “big 0" relationship is the thing involved in the comparison
tost for convergence of infinite geries. Thus, one of our.chief uses of 1t
will be to note that, if p > 1 '

$0(3)

is convergent.

~
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53. Stirling's Theorem

There is & famous asymptotic formula for n! which commuonly goes
under the name of Stirling’s theorem, though it appears that a lot of
the credit for it should go to de Moivre.

Theorem 1.
nl = prt¥e ™ A/ 2r et
where
o 1 <L :
12n + O & ™ 128 N\
S
We shall prove this formula in its logarithmie form: ;;;}\ )
@ log(nl) = (n + ¥§) log n — n + 44 Jog@r). £%.
NOW, \:"’:\'\'

log(nl) = 2 log ks
k=1 \\

If we draw a graph of log , we get a pix;j{u‘r% of this sum as the sum of

areas of reciangles: R
. ~
ON° L109%
A\ y2l
Q)
e
&\'\\"’
4 8
RS
PN\Y;
'x:\w’

Q . : Fia. 24,

From this it appears that
2 log k
k=1

LRH log = dz.

is approximately equal to

However, we see thai there is a closer approximation if we shift the
rectangles ¥4 unit to the left:
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] Io.q !

3 4 5
N\
Oy
Ta. 25. Ve \
% \/
We shall use the apprommatxon suggested by thls ﬁgure, t}gatgs,
log(nl) ~= ]H-Hi log z dz. \‘

First, however, let us find out how good an appro;d@atlon itis. Todo
this, we note that \s

[F ¥ rog ede = [ logtdt—‘f H yog ¢ dt.

In the first intogral we make the chafngc of variable
t-—k—{—m, S gt = da;

in the second, we let
t.-'——;gk’}’ x, di = —dz.

{ .
ke P 14 43

f log £ d;t.:::? log(k + ©)dz -+ f log(k — x)d
k— M S 0

¥
Ve \d 4
o f log(k? — a)da

W\

& frule-8)e

i“; 1}

/ =f 210gkd;t:—‘rf 105(
logk+f log( '_Tci :

Now, the series expansion

) Y a:*__lg‘___l_f_ﬂ_,,.
oghl -7} = ~ g~ 2k 3K

is convergent for x2/k? < 1; therefore we may integrate from 0 t0 14,

Then,
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term by term, and geb
x? 28 %
f 10g(1——) = —g@ T 1okt ‘L
_ 1(_ SR )
T\ 21 3208

= O(k™%).
Therefore, -
L % \og t dt = log & + O™,
and . N\
loginl) = 2 log & O\
k=1 :’\ k
- E U’“”’ﬁ log ¢ dt 0(11,-2)]
» O
= [ rogtar+ EO(L O\
k=-1 \J
—tlogt——i‘ 20(1—2)4_0(\)

\ ~L 1
= {n+ 1) 10g(:n+ 1) —n + €1+ o(l)
where the constant C1 is fj 10g(}§) 4+ =0, On 1pply'}ng
(1), Sce. 52, we get an addltm’nal constant term of —14; so letting
Co=C1— }é, we have \

3) log{n!) ﬁ\(n —1— sy logn — n+ Cz -+ o1},

A comparison of [8) and (2) shows that we have yet Lo prove two
things: first that'@, = 14 log(2r), and second that the crror ferm &,
which we ha\% written merely o(1), really satisfies Eqg. (1).

There\aé‘e many proofs in cireulation that the constant in Stirling’s
theorem'\é +/2x, but they are all rather long. In Chap. 9 we shail give
AT @ph(,atmn of Stirling’s theorem in which it will be obvious from
Probability considerations that this must be the casc. So, for the

}}resent, let us write
= 14 log(2r),

with the understanding thai this will be proved in Chap. 9.
As for the error term, we proceed as follows: Let

1 .
12n’
1
12n 4+ 6

Gy = €5 —

6?‘!:5“"‘
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Now, (1) reads

4 on < 0 < Ba

To show these inequalities, we note that (3) tells us that e, — 0: there-
fore o, — & and Ba— 0, and (4) follows provided that o i steadily
increasing and 8. 18 steadily decreasing. So we shall complete the
proof by showing that.”™

(5) st — On -2 ]
and
{6) Bapr — Bn < 0. ",:\:y

N\ 7

First, let us look at '. \ O
(n+ D! '.("’«
’ 1 b3 p—n—1 ‘&4
€nt1 — €& = hjg M————@' ::‘\.\\
1 v’
e A/ 2

o e( n )n—‘}é]\s
R n+ 1/ i

_ 1% n
16 we set 2 = n + 14, we have N\

2 — \
€l — En & 1+310g(‘~@
25‘4; B,

[h— (1/22)
1z %‘35.[*1 T (1/22)

2, 1
= x{i\';tlog (1 — 515) — log (1 +'2_é ]
R\ 1 1 1
R [ )
M\i:\,.' G, 8zt 247 '
A\ (1 LJFJ___...)]
“\2z & 24

).

I

11
“1+z("*ﬁ§”8025 )
i B S
122 80
_—— 1 .
@k + D2

k=1
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Now,
1 . _1_
Onpr <~ O T Enpl T & T 7975 1) T 128
1
=i~ & T+ ])

i~ ot DT IEF I
1 1

= Ept1l — En + '1_22'§ ' "T'( ‘A zg) ) :“\
1 1 A
= —_ =, { N3
2 w nEs T LTS
7 n"
- "\\ ’
L @ 1)(2z)2*= Rﬁz‘ﬁ
N
% — 2 7\
302k + 1)(22) T
=1 P ‘v
> 0 R
This proves (5). Equation (6) 1&1’(&1}:h easier:
Bort — B = ere RS O S
wt = B = e'f{*\ P 55 | 1200 F 9)
I\ 1
.Kf\'”l “ " g1 T 12
N\ \:): !
\., €3 ~ & 12:(z + 1)
WY 1 1
& T mETmEED
Q\ < 0
AN
@ completes the proof of Stirling’s theorem.
54. Complex Exponentials
The function €, where i is the imaginary unit (¢* = —1), is defined
by the series
1) ev =1+ iy +(3?_]) +M+..

31

. yr i
l.-{-@y—‘;“ ngF"'
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There are & number of properties of this function that we wanb to list
here for use later. If we take the familiar Maclaurin expansions

t i
cosy:l—%i_|_%__ C
. y3
Slnyzﬂy——m_[-?!__...,

multiply the cecond one by i, add and compare (1), we have the Euler
formula:

(2 ¢y = cos y + ©sin ¥
Replacing y by —¥ in (2), we have & )
e = cos(—y)} + ¢ sin(—y) ,‘,'}:J
= cosy — 1 8D Y; 7.\
"

and, subtraciing this result from (2, we have \;

. 1y , PN

— — _ g %7

() siny = 5 (eir — e )\ o

If we plot the complex number e jn the potnplex plane, (2) tells us
that its coordinates are coS ¥ and siy{'g:‘“ Hence, its absolute value
(distance from the origin} is N

NS

(cos®y {SHI? ¥ =1
So we have the important\@;;ﬁ that
(4) e} =1

for all real ¥'s. Kﬁ:;\mfrticular, this tells us that the exponential of &
pure imaginﬁ'{s Ainiformly bounded.

Another gmportant consequence of (2) is the periodicity of e¥.
Bince 4%
~\J X cos(y + o) = cOB Y

and\/

it follows that
{5) es(y-i—zkf) = gi¥

sin(y + 2k=) = sin ¥

for every integer k. From this we obtain the interesting information

that, for k an integer,

. L ik #0,
kﬁ) J‘ e‘&kr.' dy = ‘gﬁ !'1.‘[ .IC - 0



132 THEORY OF PROBABILITY [caap, 7

To prove this, we note that, if k = 0, ¢* = 1 and

f dy = 2m,

f ¢hu dy = % oiky

T & 0,

—7

= % (et — g%7)
- élk[em — gilEr—in] O
=0 Oy
because of (5). . o
55. The Integral of sin z/x AR

In Chap. 9 we shall want to use the result "’\\

M f SIDZ 4 o D

e X A
This result can be found in any goodﬁeﬁ,ﬂ’f tables of definite integrals,
but the student might be interestedNin the following formal develop-
ment; If we integrate by parta,‘@jﬁ-’ibe, each time differentiating the
exponential factor and int-egraﬁhg the trigonometric factor, we have

w0 "\ .2 w
f gz cos,u!.‘b}ix = i f—,, f = cos ux dx;
0 \ 0

ut  u?
and, on solving this\equation for the integral, we get
pPN\Y;

L -]
RS t
et eos ur dt = ——
»{\ fo ud -+ i

Now, 1 \iﬁ%egrate with respect to u from 0 to 1 and reverse the order
of gsfﬁg’gration on the left-hand side of the equation. This gives Us

'"\".; o .
sin & 1
\ / f g A de = arctan
o z ¢

Taking the limit under the integral sign can be justified in this case; s0
we let ¢ — 0 and have
. f 2N X dx am
1] €T

sin(—-x')' __&nzx,
=

(L]

Now,

- X X
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o . . w . e -
de = 2 de = 7. )
ewm T 9. T -

REFERENCES FOR FURTHER STUDY

80

Churehill, Iniroduction to Complex Variables and Applications, New
York {1948}, Chap. 3. - '
Titchmarsh, The Theory of Functions, Oxford (1939), pp. 55-58.
de la Vallée Poussin, Clours d’analyse infinitésimale, 15t American ed.,
New York (1046), Vol. 11, Chap. 1.
Widder, ddvanced Caleulus, New York (1947), Chap. XL - O\
. A

Ny

PROBLEMS

1. Cowpute the Stirling theorem approximation to 11, Ans. 92

2. Compute the Stirling theorem approximation tgnt for n=1,
2, ...,10. Compare the results with the actual va{ues’of nl. Note
that the error itself gets larger asn inereases, but,t‘he}relative error gebs
gmaller. This is yypical of agymptotic formulas}. M

3. Use Stirling’s theorem to get a nu;riréribal answer to Prob. 1,

Chap. 3. Hint: Tse logarithms. A\ Ans. 4474 X 107
4. Tse Stirling’s theorem to get Al ;%umerical answer to Prob. 27,
Chap. 4. Ans. 2.52 X 107V.

5. Using (5), Sec. 51, and (W, Sec. 52, vonvert (3), Sec. 53, into the
form .imx\

log T'{(n) = (?:1,\\—“%) logn — %+ O, + o{1).

Note thal this hag Daeh proved only for n an integer.
. 6. It can besio wn (cf. Titchmarsh, The Theory of Functions, page
58) that N
K\ T'(z)
~O° T+ o)

\ s

—~ T,

Use this result in conjunction with Prob. 5 to shoWw that
log T'(z} = (& — 14)loge — % A+ ¢+ o(l).

Hint: If x is not an integer, set © = + ¢ where 0 < & <1, and
apply the formula given above. Simphfy by means of (1), See. 52.

7. Substitute the result of Prob. € into the Legendre formula (11),
Sec. 51. Show that all terms except the constants cancel, and obtain
the result (not yet proved in the text) that C2 = 14 log(2m).
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8. Show that Probs. 5 to 7,in addition to evaluating the constant,
give a Stirling approximation to the I function:

T(x) ~ a¥e™ A/ 2m,

where £ need not be restricted to integer values.
9, Apply (1), Sce. 52, to the formula of Theorem T to got un alter-
nate form of Stirling's theorem:

al = (n + Yo% o/ 2mem.
10. By the methods used to prove (1), Sec. 53, show that g, of Fedb.

0 satisfies the inequalities O\
IR U TR,
S+ 12 " 24n ¥ 13O
r_ 11, ‘Apply (9), Sec. 51, to show that ~\‘
1S

Bin - ki 4+ 1) = — —.
! n =4
( ..\ {. I3

19. Use the result of Prob. 11 to complete Probs. 26 and 27, Chap. L
Hint: The additive constant can b@.@b’f&inml by substituting a specific
value of z. Letz = 1. N

13. The x* distribution with % ‘degrees of frecdom is defined by the
density function )

.‘}:_ 1 el =1l w2

for x > 0 with k(= 0 for z < 0. Sef up the convolution for kn and

e PN\Y;
e——u,"Z

o » e
Anas. km£§~*kn(u) 22‘”‘+“’f’2I‘(m{2)I‘(n/2_) fo (u_w)@m;z)—1xw2) 14,

14::S§bstitute z = z/u in this iptegral and apply (9), See, 81, to
shawithat k. * kn = Knyn.
o

\‘; 15. "Sta;rting with Prob. 21, Chap. 5, use Prob. 14 above 1o give an
fductive proof that, if #y, zs, . . . , 2, are independent and each 18
normally distributed with ¢ = 1, then the variable

i)
X} = Z x
i=1
has a x? distribution with » degrees of freedom.

16. Use (8), Sec. 51, to compute directly E{x?) and var(x®)-
Ans. 0, 2
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. 17. The density function _
(1 — z)ym-t

1@ = ~—gmm

defines the beta distribution with parameters 7 and m. Given that
+ has this distribution, find E(x) and var(z).
Ans. n/{n + m), nm/(n + m)2(n + m 4+ 1)
18. Show from the definition of of ) that

n-o(l) = oln),
o1y/n = o(1/n),
o (L/m)it = o),
o /a) + o(1/n))t = Otn—t) = o(1/n). O\

19. Show that if f(z) has a continuous derivative in some uejg;h?)or-
hood of 0 and if f(O) = f/(0) = 0, then flx) = o(z) a8 g(—‘—’rz . In
particular, under these conditions f(a/n) = o(l/n) as n"—'\nén. Hint:
Use Lhopital's rule—lim f/g = Lim /g’ QO

20. Generalize Prob. 18. If f{z) has a continuous ath derivative in
some neighborhood of 0 and if \\ ’

H0) = PO =0 = - PO =0,

_R

then f(z) = o{a™) a8 x - 0. N
91, Show that, if f(z) has a continy 48 nth derivative in some neigh-
borhood of 0, then N

fa) = §(0) -+ f'(0) +%Oj gt f-———m;(,_ﬁ) 2 + ola™).

Hint: Transpose, and/apply Prob. 20. )
99, Compare thegésult of Prob. 91 with the Maclaurin formula with

remainder: AT 00 (g2
o~ o) - s
_f(a;) __',@)\'l— f’(O)x F oo +f nl)xﬁ +%L——{—_.]__}.!$“+ll

Note thatftfiis latter result requires the existence of one more derivative
but gives'the stronger result, remainder = 0(@"*").
23N\8how from (1), Sec. 52, that lim[1 + (e/m}" = €
ki3

94. Show that n logl + (e/n) + o(l/m)] = e+t o(1). Hint: Let
z = (a/n) + o(1/n), and apply Prob. 21 to log(l + 2.
25. Show from Prob. 24 that lim {1 + {a/m) + o(1/m)]" = &

96. From Probs. 21 and 25 show that, if j(0) = 1 and f'@®) is con-
tinuous in some ncighborhood of 0 with f/(0) = & then, for each fixed
z, lim[flg/m)]" = e
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136
97, Show that cos y = Ly (et 4~ e7%).
28, Show that '

sin my sin ny = — Lylettm
99, Using Prob. 28 and (6), See. 54, verif
unequal integers,

+Y - e—i(fﬂ+ﬂ)u — ci(m—n)y . ci(n—-m}y]_

y that, il m and n are

gin my sin ny dy = 0.

—_

30, Show that )
N\

f——a gite dy = % sin al. \%
O



CHAPTYR 8
LIMIT THEOREMS

One of the most important accomplishments of the mathematicians

who have worked with probability theory has been the formulation and /A

proof of the go-called limit theorcms. An exhaustive study of this
body of work 1s beyond the scope of an elementary course, but we ghatl
do the best we can without Tesorting to advanced analytical c,oim\epts.
Probability Jimit theorems aré concerned with infinite getitfences of
stochastic variables, and in general they take the form, ¢ IPthe varia-
hles of a goquence satisfy certain conditions, then such. and such a law
(or formuls applies to that sequen we’ A givenlawb itself does not
constitute a theovem, Put Tt describes a class O Tnit theorems—those_

mem iler which the givenai holds. The purpose
of this chapter is to give a ¢ apslication 3t the limit theorems by
describing the more important laws, that have been studied. Yhen
Chaps. 9, 10, and 11 take up three of these classifieations for a more

detailed study. "

5. The Central Limit LagO)"

Let @y, o, ¥« « - ke An infinite sequence of stochastic variables,
and supposc that o wach n there is & joint density tunction for the
variables 1, @, Q. zn This joint density funciion determines 2
density funrt\i()!i‘ for the variable

O

™

AN X, = "‘2 (@ — %)

\”\ - =1
"The question then arises as to the limiting form (o
density funetion for Xe. Now (Theorer v, Chap.
independent,

g n— w) of the
g), if the x's are

var (X,J = E var(®);
- i=1 .
the values of Xn will be too widely

therefore in all the inferesting cases
profitable. However,

dispersed to make the study of X, itself very
137
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the variable

R SN
V/var(Xs)

has & variance equal to unity, and the limit of ils density function
should give us a very good picturc of the limiting distribution for the
sum of the 2's,

The variable S, is sometimes called the sum in standard units. A
deviation of one unit in S, corresponds to o devintion of ¢ (one standdrd
deviation) in X.. N

The density function for S, itself certainly varies from oug \E«éqﬁencc
{z;} to anolber, and at first one might suspeet that the limitlag density
function would too. It turns out, however, that, for Wl Hecuencees of
#'s satisfying a ccrtain rather genoral condition, the d\iﬁiis:ing distribu-
tion for S, is the normal distribution. This suggbsls the first of our
important laws. Y,

W

S

.. R\ . .
Definition 1. The scquence &y, T, This- - of stochastic variables
obeys the central limit law provided that, for every a, b with a < b,

oL b
lim pric < S. <¥p= [ :/12__ 2z,
N o 5y

where T
\< E(I‘& - Iv)
¢ 8, ==
s L
& Ear

The ~bi§’00ry of this important law dates back to the first of the
eig!lt@éﬁth century. Apparently de Moilvre (1667-1754) was the first
{:c.)}discovcr that the variables describing a Bernoullian sequence of
trals obey the central limit law—though, naturally, he did not ghate
his resilt in those ferms. Laplace (1749-1827) spent somo 20 yoars on
the general problem of the limiting distribution of 5. e made some
improvements on de Moivre’s proof for the Bernoullian casc and was
the first to suggest the general theorem that the normal distribution 1
the limiting one in a wide variety of cases. Laplace gave & proof of this
general theorem, but it is not considered satisfactory by pl‘e-‘ﬂent'df"3r
standards of rigor. The first really satisfactory proof of Laplace’s
theorem was given in 1901 by Liapounoff. For this reasoD, the
so-called central limit theorem is frequently referred to as the Laplace-
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Liapounoff theorem. The title “central limit theorem”” seems to have
peen originated by Polyain 1920. There have been numerous studies
of the problem made since 1801,  One important goal of these has becn
to improve oD TLiapounoff’s description of the class of sequences {x:
for which the law holds. A significant improvement of thig sort was
given in 1022 by Lindeberg. The true importance of Lindeberg’s con-
dition appoared in 1935, when Feller showed that it is necessary and
«ufficient for the law fo hold in ease the variables x; are totally inde-
pendent.  As yeb, the theory for dependent variables is very sketchy.
Only a few special cases of this type bave been treated.

A physical interpretation of the central limit law would be somethirty
like this: If a physical effect is due to a large number of independent
cauges, then regardless of the distributions of the measuremqnﬁg of the
individual causes, if the central limit law applies, we should.éxﬁbct the
measurements of the over-all effect to cxhibit a nearly 1 rm‘al distribu-
tion. Chapter 9 is devoted to & discussion of the ¢onditions under
which the eentrallimitlaw holds, together with a mquhEr of applications.

57. The Poisson Distribution O

Tn & contral limit law situation the limitiﬁg distribution is a con-
tingoug one whether the individual sﬁoehastic variables are or not.
The Poisson law furnishes an examplé of a discrete Iimiting distribution.

Definition 2. A sequence {{, g2, Xz + + + OF stochastic variables
having probability functjons J7, fo for - - - respectively, obeys the
Poisson limit Iaw provi@e}}s hat, for each integer r > 0,

NO Em fu(r) = a_eT__
.\ » = r

Fromat \i‘ztical point of view, the Poisson law seems t0 apply to
a much nattewer field than the central limit law. However, the pum-
ber of practical problems that come within its scope gives 1t & place of
rea ifﬁﬁort.anc.e among the jimit theorems. One explanation of this
wide Bpplicability lies in the fach that the probability functions

aY A
1) folr) = =, (;3,) (1 - -?—1)

describe variables obeying the Poisson limit law. Now, fa{r), as
defined above, i3 just the probability of r successes In % Bernoullian
trials with probability a/n of success on each trigl. If we use the
Poisson law to get an approximation for large n and note that n large
makes p = g/n small, then we have the ugual Poisson theorem for
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rare events: If p is very small, then the probability of » successes in a
large number m of Bernoullian trials 18 approximately  (np)e—/rl

In' Chap. 10 we chall give a proof that the Poisson law applies to
the case (1), and that proof will include an estimale of the proper inter-
pretation of the words “small,” “‘large,”’ and “approximuicely’ in the
above statement. We shall also discusssome speaific applicationsthere.
At this stage we should get clearly in mind the distinetion hetween
the Poisson limit theorem and the central limit theorem s aplicd to
the case of Bernoullian triale.  The number of suceesses in « Bernoul-
lian trials is the sum of n independent stochastie variables, anthi{ s
ecasy to show that these obey the central limit law. ThergiOyg, the
normal density function ought to give us approximate infgrnietion on
probabilities for the number of suceesses. Where, 1-.l1§;1;; does the
Poisson formula come in? The answor is that, if dvvery smally 1t
gives a better approximation than the central 1'1111"1'611\-?\\" doues,

As approximations to Berno ullian probabiliticy, Mien, Lthese two laws
cover different cases of the same type of &éi,ﬁ@ﬂf)ﬂ. Ineorporated In
limit theorems, however, they refor Lo ’es‘xseiitiaﬂy differenl iypes of.
«tuations. Given a single infinite Bergmillian sequence, p s constant,
and the limiting distribution is norpgaé’.l in all cases.  However, given &
sequence of approximate descriptiens of & physical situntion each of
which consists of o finite set 0fj]3@fnm an trials with p changing from

~ one set of trials fo another 80 that np is constant, then the {imiting dis-
tribution is given by t-bg'Poisson formula.

58. The Laws of Large Numbers

Returning nosir’,to a sequence Ti, ¥z, Ty, - - - Of variables and 1ts
partial sums, >

Tl

2\
\'4 X n o :— I
\\ 521 (z: — T,
we (\].efmc the arithmefic means
\'\, » Iu'n — &,
n

Tt is these variables M., that the laws of large numbers deal with.

Definition 3. A sequence &1, o, @, - - - of stochastic variables
oheys the weak law of large numbers pwvided that, for every constant
e 0,

lim priiM.| <€ =1

i 2
The weak law of large numbers applies to a Very wide varicty of
situations; and where it does apply, it gives some VEry interesting
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information about expecta.ti_c:ns”cuf-.stochaStic- variables. Note that

ﬂ’f“:iy“"}zf«; |
ki) K
i=n =1

that is, M is the difference between the arithmetic mean of the values
of the «/s and the arithmetic mean of their expectations. The weak
taw of Jurge numbers might, therefore, be restated in this way: Given
any bwo numbers € > 0and g > 0, therc is an integer N = N(en)ysuch
that, il » > &, then the probability ig greater than 1 — 7 that the
arithmetic mean of the first n variables will differ from the arithmaltie
mean of the first expectations by an amount less in absolute walue
than e A\ Ny

From a strictly theoretical point of view, the weak law pffiarQe nun-
bers s a fitst cousin to the central limit law. They are,ea}sﬁ concerned
\with the limiting distribution of & normalized sum ofn ¥ariables from
a given sequence. The central limit law st&tcsj,,t:h}li the limiting dis-
ivibution for the variable &, is the normal dis@ritg&ition. The weak law
of large numbers states that the limiting dighibution for the variables
A, ig the so-called unitary dist-ribut.'igﬁ;—'—i}robability of 0 equal to
unity, and probability of all other valses equal to zero.

In discussing the kinship of the céntral limit law and the weak law of
large numbers, we should poiad out that the central limit law is the
more potent of the ¥wo. ’By,\this we do not mean that the central
limit law always implies tie esk law of large pumbers (sce Probs. 14
and 15 at the end of this chapter); but when they both hold, the central
Limit law gives fary mt‘é information. The statement that a sequence
of distributions .t'.é;mis to the unitary merely says that with inereasing
probability ﬁl{é\?ﬁlues of the variables cluster about zero, but it says
nothing ahout how the cluster is distributed. For example, cach of
the folldwihg density functions doescribes a near unitary distribution:

O +

Fia. 26.
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However, only the first of these shows promise of being anythinglike
normal after the change of scale S, = nM ./ [var(X.)]%

To be more specific, it is easy o show that Dernoullian sequences
obey both laws. Therefore, if we toss a coin & large number of times,
the weak law of large numbers tells us that there is a probability close
to 1 that the number of heads divided by the total number of tosses
will be near ¥4. In terms of distributions, this means that in a large
number of sequences of tosses we should expect most of the valucs of
r/n to be near }4. Howcver, for information as to the expectedafre-
quency distribution of these values of r/n, we must turn to the ceptral
limit law. Q)

While these comments fit the weak law of large numbers into its
proper niche in an outline of the theoretical contcpﬁ"‘.of the limit
theorems, there is another way of looking at it thaf Et&:complislms two
important ends: (1} gives a picture of thep ract-ical"igﬁcrpl'ctuti(_)n of the
law, and (2) suggests the background for a generalization to the so-called
strong law of large numbers. , x’,\\’

The n variables &1, ¥z, « « + ; Ta dofipe/an n-dimensional event space
in which each point is represented b & sequence of # numbers (its
coordinates), each of which is a possible value of onc of the variables
z. Now, the inequality |M.l.&e defines a point set A, in this
n-dimensional space—the setdftall sequences whose arithmelic means
differ from the number

™ fl

: 4 5 % n
Vo D i=1

by an amou t:lgss in absolute value than e. The point set A, has @
certain p;'dpa ility determined by the joint density (or proba.bility)
i unctigaa\\{or the n-dimensional space. The weak law of large numbers
says"cbat for every 7 > 0, if we look at the sct A, . in a space of a
,.,%Ufﬁéiﬂﬂtly large number of dimensions, we shall find its probability to
e greater than 1 — n.

Suppose the variables x; represent the results of experiments. The
n-dimensional space mentioned above represents the set of all possible
seqquences of results of the first n experiments. The sct A, . represents
all those sequences of results which satisfy the eondition || < e I
the weak law of large numbers holds, it tells us that, if nislarge enough,
the sequences of results of the A, type will form a large proportion of
the set of all possible sequences of results.

The picture of an event space composed of sequences of numbers sug-
gests the necessary background for a description of the strong law of
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Jarge numbers. Suppose we consider an event space whose points are
infinite sequences of numbers. In particular, we want to consider the
space of all guch sequences oy, g, Gz, « - « 3 where, for each 4, i is a
possible value of the stochastic variable z;. The details need not con-
cern us here, but it is possible to define & probability distribution in this
space of infinite sequences in terms of the joint distributions for the cor-
responding spaces of finite sequences. If this 1s done, then a set of
infinite sequences will have a probability. The strong law of large
numbers is concerned with the et of infinite sequences {os} for which

L N
.1 _ 2 N
limg — (o — %) = 0. PR N
n 4
i=1 "\
N
Defindtion 4. ‘The sequence &1, T2 Zgy - . . Of stochaitic variables

obeys the strong law of large numbers provided thafv/

prilim M, =0} = 1\
ot ¢

where \¥;
"

1
M=), SR

P N
oy

"The first thing we should obServe about the strong law of large num-
berg is thal it says M ,L—,—»@imth probability 1, not M,—0, period.
e ot i alveady. familiar with the fact that probability 1 does
not necessarily meanylofical ecrtainty, and (except for certain frivial
cases) probahility 9% the strong law of large numbers definitely does
not mean cortaidfy. Suppose (asig usually the case) there is some fixed
number 5 S deuch that each of the variables x; can assume 2 value
greater flan Z; 4+ 8. Then, it is logically possible that every &
%S‘ll,!,{l&s\":’iﬂéh a value, in which case A, > bfor eachn,andlim M. =2
Fowﬁ‘fmple, it is theoretically possible that we get heads on every toss
of a ¢oin; therefore it is not logically certain that the ratio of heads to
total tosses will tend to 14, though the strong law of large numbers tells
us that the probability of this latter cvent is unity.

Tn a discrete event space this phenomenon of probability zere for a
logically possible event does not oceur; S0 in the strong law of large
numbers we must be dealing with a continuous event space. This is,
indeed, the case; but the student must not jump 0 the conclusion that
we are restricted fo continuous variables for the z/'s.

The example of coin tossing points this out very effectively. A
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sequence of tosses of & coin may be represented by a sequence of 0’sand
1’s with the conditions that the jth and kth places in the seguence are
independent if j # & and for each place the probability of O 15 14 and so
is that of 1. Now, an infinite sequence of (s and T's can he thought
of as the dyadie expansion of a number between 0 and L. A dyadie
expansion is an expansion in powers of 14 in contrast Lo n decimal
expansion, which is an expansion in powers of 1{y. TForcxample, inthe
decimal system

1 0 4 T
1047 = g+ e T 308 T 00 ~
in the dyadie system N
1011$£+2+i+l. .~<\"~\
' g Taz b 23" 2 « \

Clearly, a dyadic expansion involves only zeros and ()p(;.@ \ The dyadie
02 would mean (if anything) .10, just as the decimal~B(10} would mean
10. ’

So let us think of our infinite sequences of héalds and tails as dyadie
expansions of numbers betwecn 0 and L\Jn this simple case, the
mysterious “space of infinite sequences? “Nivolved in the strong Jaw of
large numbers can be represented agymerely the unit interval. Nob
only this, but the probability dis};rihiltion is o familiar one.  If o poind
is chosen at random in the unit inferval, the probability that the kth
place in its dyadic expansionwill be 0 1s exactly 14; and the jth and kth
places are independent fory = k. (See Prob. 33, Chap. 3, where the
analogous property {:i&\'décimal expansions is pointed out.) Mo the
event space of infiptke sequences of ¢oin tosses iy represented by the
unit interval Wiitli’a ‘Gonstant density function. Herc each variable z:
assumes only ve'valucs, but the space of infinite sequences iz a familiar
example f:?g).i:’ontinuous event space.

Tor t,h';xurpose of contrasting the weak and strong laws of large
numt\)éxs, fet us agsume that our sequence space can be represented by
the;:unit interval with constant density function. We need notb stick to

adic expansions, though. The general picture is that we have
stochastic variables M,—that is, functions 3.(¢) defined over the
event space 0 < ¢ € 1. The conpection between this and our original
description of the limit laws is that M (f) is the average deviation from
the mean of the first n values in the particular scquence representcd by
the point t. For this model the weak law says that for cach fixed
e > 0 the ¢ set for which |M,(¢)} = € has probability tending to zero.
The strong law says that the sct for which M.() — 0 hag probability L.
_ The thing to note about the weak law is that the ¢ set whose probabﬂ—
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iy is tending to zero may move around in such a way that Ma(f) does
ot tend to zero for any fixed £. Suppose

M(t)-'_—‘{l fOftinEn
i 0 otherwise

where T, s an interval of length 1/n with the E.'s 1aid out end to end
and lapping back when they reach the end of the inferval:

£ Es Es

In this case,

Fia. 27, RS

1
pr{Ma(t) # 0} < P D:xi\\':

SV .
so bliese intervals eontinue to

However, Si/n 18 a divergent series;
for ho ¢t does M ,(t) become and

lap buck and § orth indefinitely so thab
remain close to 0. Thus, o

priMLH% '0} = 0.

o the weak law holds, but therstrong law does not.

On the other hand, the §brong law implies the weak law. Referring
again to the unit inte;vgl\mode‘x, let € > 0 be given, and let Br.c be the
set of points ¢ such that M. < eforn > F but not for # = b — 1.
Now, M) — Q{nea’ns that ¢ must beina B, set for sorme k; so if the

strong law holdsy

.f::\ pr { 2 Bk,e} = 1.

\ 3 =

22N\

Towéver, wo have defined the By.s so thab they ar
according to the addition principle,

2 priBrd = 1.
k=1

o disjoint; thus,

Therefore,

i Bk,e} ~ lim i priBrd = 1.

lim pr {

Fr—r =

Eod

=1
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Now, if ¢ is in the set

Bk,n

k=1

it follows from the definition of the B's that |Ma(0)| < e so theresult
above tells us that

lim prilMa.(0)] <€ =1,

fH—t 0
and this is the weak law. ~

We suggested that the student follow the above proof with thezanit

interval model in mind with the idea that that might help him(io,get a
picture of what was going on. We should remark in concli¥ion, how-
ever, that this proof can be completely divorced from the specific model
to constitute an argument that the strong law of larga’hn mibers always
implies the weak law. oS

59. The Law of the Iterated Logarithm N

Ti & sequence of variables obeys the gt-r}:>ﬁ’g law of large numbers,
then, with probability 1, X» = o{n). The question then arises as to &
better cstimate of the probable ordcref magnitude of the sums Xo. 1t
turns out that quite a large pumbérof scquences of stochastic variables
satisfy the condition X, = ‘O'([v'ar(X 2) log log var (X. )% with
probability 1 and that for{most interesting cascs this is the best 0
relationship that can be obtained with probability 1. Specifically,
it has been found thabmany sequences of stochastic variables obey the
following law: O

Definition/B> A sequence %1, Zp, T3, - - - of stochastic variables
obeys the\l‘a"}&’ of the iterated logarithm provided that the following con-
ditionsdiold with probability 1: For every ¢ > 0

(111 ;\'. ’ 1X ﬂ1
\§ [2 var(X,) log log var(X.)l*
for all but a finite number of values of n, and

<14+ ¢

| Xl
@ [2 var(X,) log log var(X,)]"* >1—«

for an infinite number of values of n.

. Wae shall not attempt to give any detailed discussion of the law of the
iterated logarithm in this book. Theorems giving conditions for the
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alidity of the other limit laws are given in the next three chapters.
Sinee there is nmo chapter on the iterated logarithm law, we might
state here (without proof) the standard theorem!:

Theorem I (Kolmaogoroff). 1f the stochastic variables £1, Te, X3, - - -
are individually bounded by the numbers K. (thatis, prilzs] > Ka} =0
for cach n) and if

K, = o(var(X.)ilog log var(X.)I),

then the scquence {z,} obeys the law of the iterated logarithm.

Thore is an example, due to Marcinkiewicz and Zygmund, e ‘the
cffect that if the o in Theorem 1 is replaced by O, the result nolSnger
holds; but ihe surprising thing is that in this exarople it is (2X that fails,
not (i) as one might suspecek. In other words, if the ~ajues of the
individual variables x; are too big, the sums X, may b boo small!

There arc many sequences of stochastic variables\e which both the
central limit law and the law of the iterated lo Eig?%ﬁhm apply, and the
contrasting import of these two laws gives\a(Ve good picture of the
notion of random sequences of pumbersiJSuppose we consider an
infinite sequence of experiments to whié& both laws apply. The cen-
tral limit law says that the possible gegtiences of results are so arranged
that, for every sufficiently large 7 Jyoughly two-thirds of them satisfy
the condition |Sa} < 1andro ghly 95 per cent of them satisfy the con-
dition |84 < 2. However,the law of the iterated logarithm says that
for almost every individual sequence we have

S (1 — €2 log log var(Xail*
an infinite number-of times.
:"\s¢
§ REFERENCES FOR FURTHER STUDY
Feller, {The Fundamental Limit Theorems in Probability,” Bull.

~Alabr. Math. Soc., vol. 51, pp. 800-832, 1945.
Haﬁﬂés, “The Foundations of Probability.”

PROBLEMS

1. Show that, for a Bernoullian sequence Of {rials,

and
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Né Gtate the weak and strong laws of
sequences of trials.

Ans. Weak law: (Hivene > 0, pr

Sirong law: pr { pl 1.

3. Find the probability function for Sa 1

sequence, and state the central limit Jaw in terms (

flmctim‘l Aﬂs lj.[rl\/??f)a nCﬂp-}—z L5
ﬂ—'”
4. Find M, and S, for a Poisson sequence of
Chap. 6). Ans. Ma=-—10 Se=71—
. State the cenfral limit lasw and the wo
pumbers for a Polsson sequence of trials. O
RN 2\
Ans. Central limitlaw: pr {a < (ilﬁ;%\é b] .

Ne/

Weak law: Given e > 0, pr ‘% —v~p}|:;< e} — 1.

v’.

Strong law: pr { — p} ALY
~\

&
tinbles Ty, Ty, T3y -

6. Let each of the &

in the case of a B

qpﬂp—t—z-\/npqquq —en g =

[oriap. 8

arge numbers for Bernoullian

o<l

prnowllian
i this probability

1
N '__:: 8 —2:"&
W2

s H“i@b\ 12,

= %
?’JB/f\ ??iq\{) .

Lric

ok andl %n(m s o large

b
—a
e

— e da.
A2

. have a Poisson distribu-

tion (probability functlon asee/z:Y), und let the,m he independent.

Setting \ \ ¢
AN n
\O” Ko=) @
show igh;a:t\ o
» ~"‘0 Xﬂ
,,,\::) ﬂ”In = ? -— f,
and
8, = Xn — na
A/ na

7. State the weak and strong laws of large nu
guences of variables in Prob. 6.
5% -

Ans. Weak law: Given € > 0, pr

o o)
law: pri=——ua

1.

mbers for the se-

< e\ —» 1. Btrong
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8. Tind the propability function for S, in Prob. 6, and state the
central limit law in terms of this probability function. Himt: See
Prob. 17, Chap. 5. Ans. lim e (nayret=Ves 1 an

s @ (ng + z v/ no)! /2

9. Show that, if 1, @ T8 - - - are independent and each 18

npormally distributed, then the contral limit law holds. Hint: See

Corollary L to Theorem X, Chap. 5.

10. Let iz, L2, &5y - - - be independent and each normaily distributed
with variance unity. Setting
.o " ,
X = E 3 .
i=1 (N

find M, and S, for the sequence (%} \ \
2 FN32 —
Ans. Ma=% =1 Ny S
11, State the strong and weak laws of large numbersdor the squares
of sndependent normally distributed variables. N

2 ¢
Ans. Weak law: Given €= 0, pr {%—T\ 1T < e] — 1. Btrong

2 %
law: o7 {%—-a 1} = 1. : ,:,’:..
12. In terms of probabilities fpl‘:‘;i('z: gtate the central limit law for
the squares of independent nqpmzﬂly distributed variables.

N 2 _.p b1
A»n Yoy la S_ X i S b] — _____,g_-za,rgdz'
Y { Vo .V
13. Find the deggitsf'function for 8., in Prob. 10, and state the ce‘nt.‘[‘a,]_
limit law for thq{qﬂares of independent normally distributed variables
in terms of tiiis density function. Hint: See Prob. 13, Chap. 7.

. s\ 1 — - \/d_ — 1 32/ 2
Ans.  J e G ) /Dt g (o /2 = _ .
ns ;h AT (/%) (n + 2/27) ¢ v

Sar

4‘-\ Lot the stochastic yariable p assUIGe the values £ V 2k — 1
with/probability i4 each. Let the a's be independent. Ghow that in
this case N, = M,; 80 the central imit law and the law of large num-
bers cannot both hold. Actually, the contral Hmit 1law holds, and the
law of large numbers does not.  (See Prob. 3, Chap. 0.

15, Show that, if var(Xa) = o(n?), then the central limit law implies
the weak law of large numbers. Hint: In this case M, = 8. o)

and
—e/o{l} ‘\/2_"'7-
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18. Does the strong law of large numbers state that in & sequence of
Bernoullian trials the pumber of successes minus the expected number
will very likely tend to zero?

Ans. No; compare the inequalities |(r/n) — p| < eand lr — np| <e.

17. Assuming the central limit law to hold for Bernoullian trials,
show that, no matter how large the constant K may be,

prilr — apl < K} —0.

18. Show from Prob. 17 thal & gambler with a finite amoun of
capital who plays a perfectly equitable game has a probability of gbig
broke arbitrarily elose to 1 if only he plays long enough. ’ <\“\

4D
L ¥4
P
)
AN
% o/
R ¥
A\
PR -
.
o &N
. \
‘\, -
- ,{
:“s\
¢ & /
A
t"\\"}
P,
O
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'\"’/



CHAPTER 9
THE CENTRAL LIMIT THEOREM

As we pointed out in Chap. 8, the most general form of the central
limit theorem for independent variables is that given by Lindeberg.
We shall begin our discussion by stating the Lindeberg theorem with-
out proof. This should ab least satisfy the stiudent’s curiosity as to
what the best possible condition for the validity of the central limit
law looks like. While we bave the Lindeberg condition before\'ﬁs,\
we shall derive from it certain corollaries describing some of the more
useful cases of the central limit theorem. The chief vizfhe of the
Tindeberg condition is generality, not gimplicity; 80 hetcorollaries
may well be of more value than the theorem. \/

Turning to the guestion of proofs, we want to outline the method of
characteristic funciions. This was Liapounoﬁfg:éie hod of attack, and
it remains the favorite tool of the statisticians in dealing with limit
theorems generally. While a rigorous deyeicrpment of this method is &
litile too advanced for an clementary,dourse, the formal work ean be
carried through; and from this part ef, our discussion the student should

~ 3

get an intuitive idea 28 to why phe normal distribution appeats as the
limiting distribution for S, inlghch a wide variety of cases. This is,
perhaps, the most import ‘part of the chapter, because without these
sections the student has nothing but our word for it that the central
limit law applies 10 apfthing except TBernoullian sequences.

We shall conclp{e \with o detailed discussion of the Bernoullian case.
Using essentially the method of de Moivre, We €an give & compieie
proof Withougétting above the analytical Jevel on which we are trying
to piteh, {his’ book. It might seem that we include this proof only
becpuse e think that there ought to be a proof of something in this
chapter; but, actually there are two concrete results of this effort.
In this case we are able o give an understandable estimate of the
error term, and in the eourse of our proof we run across a very clear
explanation of the need for the Poisgson disiribution as an slternate

approximation formula in case P is small.

80, Notation

In Chap. & we saw that the central limit law was concel:ned with
sums of variables of the form x — % 1O simplify the notation, leb us
151

Q)
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make it a standard practice to consider these translated variables.
Their distinguishing characteristic 1s that cach has mean zero, but
[see (b) of Theorem IV, Chap. 6] variances are not affected by this
maneuver. As long as the variables z, all have cxpeclutions, these
translations can always be performed; so the hypothesis Z, = 0, which
appears in all our statements of the central limit theorem, is not restrie-
{ive, only explanatory.

To avoid repetition, let us explain once and for all the principal
symbols to be used throughout this chapter.

N\
zx:  Ome of a sequence of stochastic variables.  As noted@hive, we
shall always assume T = 0 a\
fi:  The density function for 2y ~\ Dy
] N\ 3
Xa: E T \‘
E=1 )
by var{z) RN
B.: var{X.) D
8. X./A/Ba O

NN

The classical eentral limit law (péﬁﬁ}tion 1, Chap. 8} cannot even be
formulated unless B, exsts. Wherefore, we shall assume without
stopping to say so in each theorem that the second moments of the
variables always exist. Inhas been found profituble (cven in cases
where B, exists) to gepetalize this definition by dividing the sams X
by something other? Katt A/ B.. However, for an introductory course,
we have decided fo.confine ourselves to the Laplacian form of the een-
{ral limit lawgiven in Chap. 8.

There is anetrivial case of the central limit theorem that we should
dispose of Wefore beginning a general discussion.  If all the variables Zx
are nofndally distributed, then by Corollary 1 to Theorem X, Chap. 5,
eachvof the variables S, has a normal distribution with variance unity;

o"qb'}he central limit law obviously applies. Ilaving noted this special
\,ease, let us now agree to exclude it from consideration in all further

discussions. Thig will simplify the statement of theorems in several
instances,

61. The Lindeberg Version—Informal Discussion

As we pointed out in Chap. 8, Lindeberg gave a very interesting
condition for the validity of the ceniral limit law, and Feller proved
some time later that this condition is the best possible for the case of
independent variables. We state this result here without proof.
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Theorem I (Lindeberg-F eller). If the stochastic variables ék'ari
totally independent and each has mean zero, a necessary and sufficien
eondition that

b
hm prie < 8, <b] = ,\/1__%[ 2 da

is that, for every e > 0,

1
li X, - ¥(g)dz = 0.
(1) nin;'; Ikniaf bk _/.]zf 25\/3_.« ? flr( ) .

i i i de
Thers are a number of Interesting ohservations that can be 3;13\
about the Lindeberg condition (1).

"\
N\,

Corollary 1. Tf the Lindeberg condition holds, B, — CQ‘ p

L
~ i5 the sum of the pdaibive quantities
g. ‘Therefore, it eitfier tends to = oris

e a constant M gysh that B, < M for
all we have to do is choose 50 Yhat

(2} de =

f[zl Sey/3 fl(z}.;z’ 2’

and the required maximum

clearly contradiets {1). . h
The converse to Oorollal'yzlfms not true. If Bf‘ — o, thcn’nfozrziif

fixed £, the integral in (1) iltend to zero; but it does not follov

the maximum culled fom %

(1) will tend to zero. We shall see an
example of this in themext seo tion.

I W i : i in which the
First, however, 1ef\g note some important special cases hln1 (1
condition B, — £ (8 sufficient for the central limit law to hold.

Coroliary 2'\\ if the

For independent variables, B
b and #0 18 monotoned nereasin
bownded.  Buppose there wer
all #’s.  "Then,

will be :é‘r'eat.cr than 14 for all #’s. This

variables x;, are independent and uniformly

(A \ =0f
bounded .@&f., there is 5 constant K such that pri|zm) > K} O{;?
everyblythen the condition B, — o« implies that the scquence {wx
obc:);&,\ﬂfe central limis lavw.

int 1
Foreache > 0, ¢ /B, - « ; and as soon as ¢ /B, > K, the integra
in (1) is zero for

every k. Thercfore, the Lindeberg condition is
obviously satisfied,

Corollary 3. I the- variables
(e, all have the &

then the sequence {

z; are independent and identi(;al
ame density function) and have second moments,
25} obeys the central 1imit law,
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Since the variables z. are identical, the variances by are all the same.
Let us call them b, Since the variables 2 are independent, we have by
Theorem V, Chap. 6,

B, =nb— =,

Therefors, as noted above, the integral in (1) tends to zcro for each
fixed k. Now, with the variables identical, the maximum called for in
(1) is given by any term we happen to choose—given, say, by k = 1
for every n. So, if the individual integrals tend to zero, the maxithim
does and the Lmdeberg condition is satisficd. O\

Despite our comment in the previous section that we \;u(‘ auto-
matically assuming that second moments exist, we made ‘-;p[ ¢l men-
tion of this in Corollary 3 to eliminate possible (,onfuw;m 3 The oldest
known example of the failure of the central limif ldv™ (dl%covered by
Cauchy) involves identical variables whose sesond’ moments do not
exist. AL

O

62. Examples—PFailure of the Law 'S

NN

In any diseussion of the central hmlt ]aw it should be pointed out
that, while it applies {o a wide varvlety of eases, it is by no means uni-
versally applicable. In a later soction of this chapter we shall
describe the more profound cxample of Cauchy. Here, we want to
give two rather trivial exam:&les in which the Lindeberg condition is not
satisfled. It then follgws from Feller’s result that ab least the classical
version of the centralimit law fails for these examples.

The easiest way\to ‘tonstruct such an example Is to note Corollary 1
to Theorem I and take s sequence of variables for which B, is bounded.
Let @, be defined as follows.

O
Q) me —lg gk
O Sulzad: 4 15

Here
R YA AV DA RS
b“_ﬁ'('"ﬁf) "'E'(??é) T

If the variables are independent, Theorem V, Chap. 6, applies, and

_ 1 1 1
‘Eﬁ<2$-§
k=1 k=1
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However, we said in the last section that we may have B, — « and
«till not have the Lindeberg condition satisfied. An example of this
situation is given by the variables zx defined as follows.

gp — 26 0 Pl

Fulan): Pgrts 1 — lgkee Lgi+s

Here
b = 2}}?' < (—oEr2 @_}4__8 - {22 = OF;
8O
n
Bo= ) 2 =2+ -2 R\,
“ ¢

However, the two nonzero values of z, are both greapcp?in"&bsolute
value than B, and the second moment of those two valies'is exactly b..
S0, taking ¢ = 1 in the Lindeberg condition and séttidg & = n in each
case, we sec that the required maximum is ideg.@aﬂly 1
63. Normal Distributions in Nature x\

There are many examples of physical\plienomena for which experi-
mental evidence indicates approadniégtéiy normal distributions. In
biology, muny physical measuremé:iits on living organisms, tabulated
for a large population, exhibit & pearly normal frequency distribution.
1n physics, the results of a ger{és of attempts at the exact measurement
of a quantity are usual ’\ie‘e}y nearly normally distributed. In bal-
ligtics, the pattern of hits from a large number of shots fired at a fixed
target usually forpg something that rescmbles & normal distribution.
In thermodyna 'i:é; the distribution of molecular velocities in an ideal
gas is very close’to normal.

On seeingthése and other examples of normal distributions in nature,
anyone familiar with the central Jimit theorem would guite naturally
suspecf that it had something to do with thé situation. The usual
int&}\i‘ét&tion is that such effects are the result of a large number of
essentially independent causcs and so can be espressed as the sum of &
large number of independent stochastic variables, each variable repre~
senting the effect due to a single cause. This ‘“hypothesis of ele-
mentary causes’ is certainly plausible as & possible explanati?n of the
oceutrence of normal distributions in nature. However, it is hardly
justifiable as the explanation. There are other hypotheses .than those
of the central limit theorem that lead to & normal distribution. (See,
for instance, Levy and Roth, Elements of Probability, pages 118 to 124.)

The hypothesis of elementary causes i« an interesting one, and it may
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well furnish the explanation for many of the observed normal distribu-
fions of natural phenomena. ¥owcever, the most satisfactory applica-
tions of the central limit theorem found so far are not those based on
this idea. ¥urthermore, in many cases the most eonvineing evidence
in favor of normal distributions is purely experimenial audd has nothing
to do with the central limit theorem.

Another thing we should bear in mind is that the simaple hypothesis
that a phenomenon is due to a large number of causes does not neecs-
sarily lead to the central limit law, If there is one deminanieiuse,
modified by a number of second-order effects, the dixtrilufdnne of the
over-all effect should be essentially that of the major pueias —which
may not be normal at all. This is readily explained by Corollury 1 to
Theorem I. If the second-order effects are definitidly ¥just that, B,
remains only g little larger than by and the centyad ,1"11'1'1i1; theorem doeg
not apply. \/

Finally, then, we might say a word or twedbout the tze of normal
distribufions in statistics. In the next ’Q\“o sections we shall diseuss
two examples in which we can pull ouRovay up via the centrul limit
theorem from a sequence of more otless arbitrary distribuiions to
something that is normal or basqdﬁﬁ the normal distribution. These
are only by way of example. :I".héfe are many other uscs for the central
limit theorem in statistics. Hwever, there is another body of statisti-
cal formulas based on the@ssumption that the population being studied
is normally distributed{) (See, for instance, Uspensky, Introduction lo
Mathematical Probgm}ty, Chap. XVI.) We can think of two good
reasons Why any.staidy of statistics involves a lot of work ith normal
populations, AGne is that this is the field that has proved mosl sus-
ceptible to fmvestigation, and so there is more known about it. The
other 18‘119 point we are coneerned with in this section, »iz., for first
one Iieg‘sﬁn and then another there arc quite a lot of normal distribu-
tigngamong the things stalisticiuns study.

{ “Btatistical theories based on normally distributed populations are
16t at all out of order as long as we realize that the normal distribu-
tion is only something that is frequently encountered, nol soimnething
guaranteed in all situations by the theory of probability.

64. Example—Sample Means

Let us turn now to some of the things the central limit theorem can
actually prove for the statistician. The first thing we should note 13
that the process of sampling furnishes an example of a sequence of
stoehastic variables. Suppose there is a population of seme sort for
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which we arc interested in a certain measurement connected with the
individual members. Tor example, suppose we arc interested in the
height of American school children, the income of American families,
the butterfat content of milk sold by a certain dairy, the number of
defective cartridges per case in those manufactured by a certain com-
pany, cte.  1f we pick a single item (%.¢., school child, family, quart of
milk, or ease of cartridges) at random, there is & probability distribu-
tion for the various possible results we may get on measuring this sam-
pleitem. Thatis, the result of an individual sample measurement is a
stochastic variable. 8o the usual collection of a number of such sam=<
ple messurements forms a sequence of stochastic variables. O\

Teb us suppose that cach sample measurement is independent'of\ﬁll
the others.  In sampling from a fixed population, this meansygndom
gampling with replacements—:u practice not usually foliowed. We
want to uge this independence hypothesis here, but thig ddes not com-
pletely invalidate our results. The degree of dependence of samples
from & very large population is probably so small thabit does not intro-
duee sppreciable errors, Furthermore, in thg;‘\éxamples of sampling
{rom a production line (milk, cartridges, efe) the hypothesis of inde-
pendeuce seems reasonable anyway.

The result of each sample measurerg é;nﬁ'ﬁs a stochastic variable with
a probshility distribution given by jfr,hié" distribution of measurements
for ihe entire population. Thig distribution is unknown, of course
(otherwise there would be noeiht in sampling); but in general it is
bounded and therefore mugtabave & mean 2 and a variance o7,

ety o0, « . . ,Zn DB t%e results of the first n sample measurements.
Each 2. 15 a stochastigim’riablc with mean Zand variance o2, Therefore,

P ()
- =1

2 &

and sincethe zi’s are independent,
OO

0"\\’ v 4 n
AV vm‘(Em) = not
kel

Since these arc identical variables (even though their common d.istribu-
tion is completely unknown), Corollary 3 to Theorem I apples, and

xp — nE .
51
fm prie <=t nr— =D __.f Y 73
- a \/Zr

T v
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Now, we let

and our result reduces to

1 n _|< ey nfa 1 ye g
rii= Ty — T = e dz
R AR NSl

k=1
for large n. ~

The variable (1/n) Zz;—the arithmetic mean of the sample mégsure-
ments—is called the sample mean. We thus have an (atmm.te of the
probability that the sample mean differs from the true mén' # by less
than any given amount. Sincc € v/njo— © as n -—).«-}:z, this proba-
bility tends to 1.

This last result would follow more directly fw‘ﬁi 111( law of large
numbers. The significant contribution of the dentral limit theovem is
that the sample mean is approximately ‘n.e}r{mlly distributed with
expectation Z and variance ¢?/n. Furthexmore, this is true no matter
what the distribution is in the populationfrom which we are sampling.
Thus, if we have some information emthe size of o2, we can f{ind from a
table of the normal distribution thg probability that the sample mean
will diffcr from the true mean by any given amount.

We shall return to this problem in Chap. 11, where we shall show
how the law of large nurabiers can be used to justify the usual cstimate
of o2 from the sample @4ta7 Just now we might note a very simple case
in which we can geba lot of information without knowing the actual
value of ¢, Suppse our samples are a Bernoullian sequence of trials.
That is, the xésilt of each sample is either yes or no. The sample
mean is then®’/n, the ratio of the number of yeses to the number of
samplese\\The true mean is p, and so we have

\ Ny o [ ] [w’;/a 1 2 g
~\. o~ ———= e dz.
—evn/o '\/%
Now, in this case o2 = pg < 14; so

\ )
2ev'n 1
e] > f — ¢ dz,
—~2ev/n \/211’

If we note, for instance, that according to the tables

2 1
—/2 lz ~ 95,
f N

—2

I_p<e

r

g

LIRS
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we see that with probability at least .95 we have the experimental ratio
within e of the theoretical probability provided that e /2 > 1. For
example, we get an estimate of p correet to within .01 with probability
95 provided that .01 v/2 > 1, or # > 10,000. This is taking the
maximum value for ¢%. I there is good reason to believe that p is
noticeably different from %4, we can improve this estimate.

65. Example—The x* Test

The y* test of significance for sample data is a standard tool in
present-day statistical practice. A complete derivation of it is a Litele,
over our heads in this ecourse, but we have developed enough pof the
basic ideas to give the student some conception of what is 'in\i;bh\red.

The probability distribution of a certain population is assumed to
he known. Then samples are taken from this population.™ Now, we
should not expect the frequency distribution of the oples to follow
the theoretical distribution exactly, but we want t0.get some measure
of the deviation of the sample distribution frathothe theoretical one
that will give us an idea of the consistency of Qﬁr\t \eoretical assumption

with ihe experimental results. \$
If the total range of the sample val}lés'is divided into m intervals,
the theoretical distribution gives us aprobability p:(¢ = L2, ...,m

that s sample will fall in cach of t;ha'i'xitervals. %o the expected number
in the #th interval out of a total of n sample values is np:. If ;18 the
actual number of samples @lling in the sth interval, the sum of the
squares of the deviation{i':t

\ L
E(‘W — npi)’
O i=1
constitutes a réagénable measure of the diserepancy between theoretical
« £\WV . - +
and experintental distributions.
It tu}”!:pé\;ut that things work better if we use
e ) =
ou\\; - s _ (.r“, — 'n'pi)?'_
N\ X 2 e
i=1
Now, the problem is to find the probability distribution for x* If we
let

ry — ‘npq',
X =
/s
we have
m
X2 = x{.
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This reminds us of Prob. 15, Chap. 7, in which we had the sum of
squares of independent normally distributed variables. Each ;s just
a linear function of r;, the number of successos in n independent trialg
with probability p; of success on cach trial; therefore, us » > e, the
individual z;’s are asymptotically normal. Howcever, they are not
independent, If we remembcer that

m "
“pg=1 and Zr;zn,
i=1 io1 O
it is easily scen that ‘O
m 7'\
zxs Vpi = 0. A\ .
i=1 A\ 2

That is, m — 1 of the 2/'s determine the other OT),G‘?}O\lnplﬂtt‘,]y. Fur-
thermore, since this relation is a linear one, it t8ll§™us that the z's all
lie in an (m — 1)-dimensional hyperplane; i': c.\theil' juint distribution
is (m — 1)-dimensional, v

As we noted above, the individual 2/% hme digtributions that tend
to the normal. It does not follow that they are asymptotically innor-
mal eorrelation, but it is not surpmung that this is ihe eage.  This we -
shall-not attempt to prove, It ¢an he obtained from a multidimen-
glonal generalization of the Lentral limit theorem. Now, in Theorem
X, Chap. 5, we proved that two variables in normal corvelaiion must
be linear comblnatlone\of some pair of independent normally dis-
tributed variables. Xflis, too, can be generalized to any number of
dimensions with thc ‘result that in their limiting form the variables z,,
contained in (m — 1)-dimensional space, must be linecar combina-
fions of i, 5% independent normally distributed vailables i, ws,

Agam we omit the defails, but it turns out that, because of the
strateglc choice of constants we made in defining the «;'s, cach of the
«Qrmbles #; has variance unity and

m—1 m

2 T — a2
E”‘“Zx‘ = %%
i=1 i=1

So, as n — w0, the distribution of x* tends to that of the sum of squares
of m — 1 independent normally distributed variables. By Prob. 15,
Chap. 7,

lim prix® > ¥t} = f ’ 1 28722 iz,
N T
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. This x* distribution has been tabulated cxtensively, and.from these

tables we can find an approximation to the probability that a set of
samples will deviate (in the sense of this test) by more than a given
amount from the theoretieal frequency. .

The student should bear in mind that this is an asymptotic formula,
valid only for large n—we shall not attempt to work out an estimate of
how large.  Suilice it to say that most authorities agree that it should
he used only if n s so large that the expected number np; of samples
por interval is at least 10 for every interval. The student should notes
that 1his doos nob require a large number of intervals. As a matter of
fact, the fewer intervals there are, the fewer saroples 1t takes to get:the
expecled number per interval up to 10; though, of course, tHe lewer
intervals we use, the less information we get. Finally, we might note
that, if the number m of intervals is very large (and théntmber 7 of
samples sufficiently larger), the formula in this .se}t\lon becomes
umwieldy; and we can use the ceniral lirait theorei again—this time
taking a limit on m. For an outline of this p}'qebdure, sce Prob. 8 at
the end of this chapter. ' o\

66. Characteristic Functions o\

If #(x) is the density function fqrjé’.fs’oochastic variable z, we define

the characteristic function for x agy )

(1} go(ti)mg“ f_"; et flx)dz.

In the light of Theorem\I}h'hap. 6, we can say that o(#) is the expecta- -
tion of ¢, The chardcteristic function is the principal tool in the
Liapounoff proof Jof4he cenfral limit theorem. 'That proof will be
outlined in the Hixt section. Here we want to indicate as best we can
the propcrt‘aé Of characteristic functions that will be needed. .

First, sve Inight note that every distribution has a characteristic
funetipn: »"The integral defining ¢(¢) has to be absolufely convergent
bedalst the integral of f(z) is, and € is bounded. The sccond impor-
tant"thing is this:

Theorem II. The characteristic function uniquely determines the
distribution.

As a matter of fact, in all eases {discrete, continuous, and otherwise},
the distxibution function F(u) = priz < u} is given by the formula

T ity . gl
@) PW) ~ F(@) = Jim _2.1; f_Tf—-ﬁ—iw(ﬂdt
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whenever # and a are points of continuity of #. A rigorous proof of
Theorem II is beyond the scope of this book, but we might make it
seem reasonable by geing through the formal computations for the
special cases with which we are familiar. If thercisa density function
f(z), it is the derivative at u =z of Flu), Without attempling fo
justify the procedure, let us take the limit ag 7' — and the derivative
with respect to « both under the integral sign in (2). Then, the sub-
gtitution = x gives
f@) = % f_ | € eldt. ‘ O
oA\
By continuing to ignore the finer points that need rigorous justifica-
tion, we can give a formal indieation that this last [onmg:i’is correct.

k pA o 5 :
f et ()df f et f eit= (i’)}i:v di
- —& — = v
w k \
f N f ~ eff({rg{x\f(x)ds dv

© gitdacw |F .
- &gl
_ f‘f?:’:.z'sin klz — @f(:v)d:n.

RS . T — ¥y

It

Letting w = k(z — y), wehave

3 & o
f civp(dl = lim Zsmw f(li + y) dw.
Vo D b— =

- —_—- ap

AS
i we can takefhelimit under the integral sign (a step that is unusually
hard to justifyim this particular case) and if f is continuous, the applica-
tion of (}),\Sec. 55, gives us
O [, e = 2 ).

In the discrete case, the proof is much simpler, but it is not nearly as
convincing because the reduction of (2) to a formula for the probability
function is not at all obvicus intuitively. "The best we can do s to
state it and indicate the proof. Let us assume that the values of z are
all integers. Then the probability function—which we shall now
write f(rn)—is given by the formula

o = g [ et
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To prove this, we note that

o(f) = Z e f(k);

k

so, multiplying by ¢~ and integrating, we have
f’r S‘ =t ()AL,
-

Tf the sum is a finite one, there is no argument; but, even for an infinibe,
series, it 1s not hard to justify integrating term by term in thig case.

8o we have oA\
A\

Zf(;c) f:r git—n)t g = 271')’(11) A \.
k

L 3

becanse by (6), Sec. 54, all the integrals vanish Qx@ef)t the one for
k= n, and it is cqual to 2r. ’

We have gone to all this trouble to make Theerein 13 seem reasonable
to the student beeause, if each characteristit fanetion uniquely deter-
mines a distribution, then it is not unréagenable to suspeet that the
limit of a sequence of characteristic_ functions would determine a dis-
iribution function which is the limib of the corresponding sequence of
distribution functions. This ig, ideed, the case, but we shall not even
try to prove it here. We rgerei}'f list for reference the following:

~ .

Theorem III. Ifa &ﬁeﬁce ¢ of characteristic functions converges
to a characteristic fanction ¢, then the corresponding sequence of dis-
tribution functien® eonverges to the digtribution funetion determined

Y

If we ,a,'o}ei)t Theoremn 111, we are well on the road to proving the
centraltimit theorem. All we have to do 18 chow that the character-
igtie! f,ﬁﬁction for S, converges to the characteristic function for the

nopmal digtribution. Now, 8. 18 the sum of the first # 2's divided by
B.; so we have three more preliminary questions: (1) What does
the characteristic function of a sum lock Iike? (2) What happens to

the characteristie function when we divide a variable b?,r a con'stant?
(3) What is the characteristic funetion of the normal distribution?

Theorem IV. If z and ¥ are independent and have cha_racteris.tic
functions o, and e, respectively, then ¢iez i the characteristic function

for x + 3.
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By Theorem V, Chap. 5, ¢** and ¢ are independent. Now,
gitetd = gitzgitvy 5o the characteristic function for z 4 v is just the
expectation of a product of independent variables, and the resulé fol-
lows from Theorem I[II, Chap. 6.

Theorem V. If ¢{f) is the characteristic function for o, then o{t/k) v
is the characteristic function for z/k.

By Theorem VIII, Chap. 5, the density function for u = x/k is
g(u} = k& f{ku); so the characteristic funciion for u is .
O\
oi(f) = f_: s f(hu)du O

N

= f-: G f(Budk du “‘ N

t) \\
(%) §
R
Theorem VI. The characteristic funetign for the normal distribu-..
tion is ¢=2, O

f

R

This is proved by a direct compg?ﬁiibn from (1):

o(t) = [ <
Lo

*—a\]‘

/e W, )
) "’\ ;] = e—},é(zl—%sz—tu,rz) dx
P\ e N 2w

7\ o
\J = p—ii2 _1._. —{z—{f)1/2 dx
,’s’\ — 2?’f

N

i \ ¥ 4
&'(.‘:Application to the Central Limit Theorem

Let us begin our discussion of gencral proofs of the central limit
. theorem by considering the case {Corollary 3 to Theorem I) of identical
variables with second moments. Though this seems like a very
special case, the student should scc from the example on sample means
that it is a very important one. Indeed, whatever we may be studying
about samples (means or anything else), the sot of sample values is &
set of identical stochastic variables.

Bo let z1, 2, 25, . . . be independent and have identical distribu-

Gizr. G—ﬂ,—'z d;l?

e b4kar-2itn) o

H-si-5lk

™

3 = g“tgf 2.
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fions with second moments. As usual, we assume the cormimon mean
is zero. Instead of by we ghall now write b inasmuch as-the z;'s all
have the same variance. Furthermore, we lot off) be the character-
istie funetion for ay—also the same for all K's.  If we compute the first
two derivatives of ¢ (differentiating with respect to { under the integral
sign), we have

qar(f,) = f_‘”w ixemf(x)dx,
o) = f_‘: — x%ei® f(2)dz. ~

T'he existence of the first two moments and the boundedness of e{%‘téﬂ
us that these integrals converge; 80 ¢ has two derivatives, afid It can
be shown that they are continuous. At ¢ = 0, we geb o

ght= = g = 1; \\

80 }

o0 = [ f)de =1, o2

S0) = f_: sz f(z)do=iE = 0,

#"(0) = f_: 2 f@gx = —b.
Thercfore (Prob. 21, Chap. 7) ”

elir=1 — gtz + o(t9).
In thig preblem, M \

N U =2 5 .
o 7" A/B /b
k=1 k=1

W

\‘...
80 we w;aﬁt\the characteristic function for i/ +/nb. By Theorem v,
this jsS

\’\. i _-1__12_—1_0 _1;.
g(ﬁ) B 2n #

By Theorem IV, the characteristic funetion for S, is the nth power of

this:
() <[

by Prob. 25, Chap. 7. The application of Theorem VI and Theore;n
11 now completes the proof of the case stated 1 Corollary 3 io
Theorem 1. :
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This simple case illustrates the genera) idea, but we might as well
look at a rough outline of the Liapounoff theorem. If the x;’s are not
identical, we have different characteristic functions; so we eall them
¢x(l). Proceeding as above, we get en(0) = 1, ¢}(0) = 7% = 0, and
¢r(0) = —bs. Thus, on dividing by 4/ Ba, we have

d i Dxt? L
©k (——,-—Bn) =1 25, +

S0 the leading term in the expansion of log ¢, reads
¢ bt?
log ¢ (—\/7_“) = 3B, T <O

For the characteristic function of S, we want

th

Me(s) o
2] Bn ' ;

E=1 \
| o
so for the logarithms we want L&
\ ) S b)) e
log oy { e Y == _ - B
2 e (\/Bn> 2B, 3"
k=1 k=;,:':.

because by Theorem V, Chapi8, B, = Zhe

Again, we have the right@nswer provided that the error terms {care-
fully omitted above) béhave right. The details of that argument are
only tedious, but wé&night indicate what is called for to make the
errors behave. If e assume the existence of third moments {or the
zv's, we get thicd/derivatives for ¢; and the Maclaurin formula with
remainde;»gi\\(éé the error in the expansion of gi(t/~/Br) as fc.l?/68.%,
where |0} 1 and ¢; = E(|z:?). By some routine computation and
an ingquality on moments due to Liapounoff, we can get an estimate of
‘thessame order of magnitude for the error in the logarithm of ¢z S0
the“fotal error is the sum of these, and Liapounoff's hypothesis is just
What we should expect—that this sum tends to zero. Tt might he well
to state this theorem formally.

'1_'11001‘8111 VII (Laplace-Liapounoff). If zy, 2, s, . . . 18 & sequence
of independent stochastic variables, each having an absolute third
moment ¢, and if

n
lim B3 Z e = 0,

=t A k=l
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then
b1
Em pric £ Sa < b} = gt
P } fa \/—26

s
We have outlined here the proofs of two forms of the central limif
theorem, that stated in Corollary 3 to Theorem 1 and that stated just

~ pow in Theorem VIL Though the method of attack is roughly the
same for the two cascs and though the first form seems much simpler,
the student must not get the impression that it is a special case of
Theorem VII. In the case of the identical variables we needed only M
second moments, whercas in the more general case that is not suflicient.
The form of the central limit theorem given in Corollary 3 to Theéﬁﬂﬁ I
follows us a corollary from the Lindeberg theorem, but not i1:0,p'1~that of

7
4

Tispounoff. PR

z? {.'
68. Example—Cauchy’s Distribution O

Cauchy’s example of the failure of the centra;I. limit law consists of a
sequence of independent variables, each having the density function

_ 1 ‘ v
f(x) = 11'(1 ;F_,'x‘z)
It turns out that the characteristi@jfﬁilction for this digtribution is
fO = en.

I\ i

A direct calculation of t-%i’s..by (1), Sec. 86, calls for analyt}cal tech-

nigues beyond the S(:th% this book, but we can at least indicate t}'mt

this is the case by applying the inversion formula to o(t) and seeing
\

that we get f (’5)\ !
'_:!. i “’:\;__m 0ds = _1“ 0 gt—itm dt f ® pt—ite dt)
ﬂg‘ ‘P( T 9r W 0

—
o
D)

L e s o

4] e—vﬁ-—itz

:..\f” _ _1— gt B ;
\‘ o \T —m]en 1+2
' 1 1 1
=% (Tra it
__ 1
T or(l + 2%

Now, by Theorem IV, the characteristic function for

L
TE
k=1
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is

[p(t)l:x = gnltl
Therefore, by Thecrem V, the characteristic function for

Tt

k=1

=R

is
6_‘“_[{!‘{“ = 6_“', O\

the same as that for each of the z’s.  Bo the arithmetic mpst.:}l»}ui“ the
first # variables has the same distribution ag that of thdihdividual
variables. N

As we noted in See. 42, these variables do not have’ghcond momients
—they do not even have first moments. So the 'QI:’.l;a}sical formulalion
of the central limit law i impossible. I‘IO‘\\'(Q’QT‘, the styiking thing
about this example is that ne averaging procéss‘leads to a normal dis-
iribution. Let {on] be any scquence of eonslants. Then the density
function for O

N
1N
'_.\"" i
i,
NE=1
is 2\
o\

s \J oy

S Tl (/)

and under no (:i}*mii'}'fé't-a,nces does Lhis tend to (2x)~te—"2,

# /

£ \n
69. Bernoujligh’ Case—Detailed Proof

I thwc.ﬁ'(}riables e represent a Dernoullian sequence of trials, then
(see Sec.'48)
;n\: “; n
i B (2 :c:c) = np,
£=1
B, = var ( Z :z:;;) = npg.
B=1

If, as usual, r represents the number of successes in n trials, then we
have seen that
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Therefore, the variables X, and S, of this chapter are
X, =71 — np,
8, = (r — np)/v/npL.

Qo this special case of the central limit theorem reads as follows:

Thesrem VIIL For a Bernouilian sequence of trials,

¥ — np b1,
prlo < - _._gb]=f e dz -+ o(1).
{ npq @ '\/2“'

Q)

The vsual proof of this theorem is very straightforward. The probac’
hilivy funetion for r ig well known: o\

&)y = "Cpg. N\
The Stirling theorem approximation to the factorials 'jrk{‘Cf and the
obvious changes of variable lead us directly to theésult. Let
T - NP, *T\\';

N TR

thcﬂ. N
1) r = np + 28704,
(2) n — 1 = ngSNE VPl

Tf 2 iz bounded (and, indeed, ¥e want @ < z < b), then r and n — 7
both tend to « asn does. Sothe Stirling formula applies 0 all three
factoriale: &\
PO )
f(?‘) - ‘.-"J(JE,‘—' 1")!
A\ - }éx-'n B
%S‘___“_ii_f’_q_ {1+ o(D)]
\*w; gt (n — TR
_ 1+ o(l)

O L oll) :

" Ny ': v r+}é - a—r+, ———
~O (—"‘”—) (L) /Zenpa
\ 3 np ng

1
I R T

log (“T*g’" + oD,

Now, from (1) and (2), respectively, we have
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Therefore,

log f(r) = — log v/ 2mnpg — (np + z/npg + %) log (]_ + 2 \f%)

- (ng — 2/ npg + %) log (1 —z \/_) 4+ e(1).

Our next step is to expand these last two logarithms in serics.  Here
we have direct evidence of the significance of the size of p and ¢.  The
series expansion
QY

‘ .

2 3
log(l + o) =2 — 2 + 5 —

is convergent only for |z| < 1 and not very rapidly conw'l\gt IIL unless
|2 is very small. Now, our variables, z(g/np)* and, —zfp ‘), are
small for n sufficiently large but i cither p or g 1-,~\?uv smuall, Lhere
should be a better approximation for intermediate. m’hu s of ». Thisis
the role played by the Poisson formula—see Ghay. 10.

Qur present concern is with the limit th(,Ong however; aud to this
end we note that, for n sufficiently large, tl\exscnes expansions are valid

X

and we have
log f(r) = — log +/2mnpq Q,.’:"..
— AN o
- (n-p + 2 /npg ﬂ%ﬁ'z)'[z \@ ;;gj + O~ )]
—(ng—z‘\/% )[ 1}%—-;3—1—()(n‘3”)J Eoo(l)

— log Vg2npg — 5 2+ ol).

So pPN\Y;

L D

9 :\ — _1: —a274[ ] .
3) \\:\ fr) \/Q%mme [1 4+ o(1)]

As rayhs through integer valucs, the increments in z are (npg)™%;
hel\efore we could write

\ ' - i) = \/ = e2 Az[1 + o(1)].
Now, ag n— =, Az— 0; 50
z<h
prio <z < bl = Z(ﬁ e Al - 0(1)])

= f: %—% —42 gz 4 o(1) -+ 2 a(1l)e—*/% Az
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The exror term in (3) depends on z, but for @ < z < b it is bounded,
and its upper bound tends to zero as n— « ; therefore we can write

Te° Az o(1) | € [Be¥? Azlo(1) = of1),

whence
L |
4) pric <z < b} = f T

a

e dz + o(1).

This proves the limit theorem. It also furnishes us with the proof
promised in Chap. 7 that the constant in Stirling’s theorem is \/§1r_.\
The logarithm of the coefficient of e=*? in (4) is just the negative ‘af
the constant Cs of (3), Sec. 53. To make the integral of the defsity
function in (4) unity, we must have this coefficient equal to ;If\/%;
therefore s = log \/ﬂ (5.'; )

The uestion of the error term in (4) is a rather corfiplicated one.
The proof we have given of Theorem VIII (basically tha}t\of de Moivre)
does not lead to anything very interesting in the ways of an estimate of
this error.  Uspensky (Iniroduction to Maihen}q@cﬂ Probability, Chap.
VII) has adapted Laplace’s proof of Theorent” VIII to get such an
estimate. Rather than attempt any such procedure here, let us turn
our attention to (3) and the crror involied there. Tquation (3) gives
us an approximation to the prob@}qﬂiﬁr for a single value of r. The
Poisson [ormula (Chap. 10) givesanother approximation to the same
thing. So the most direct gomparison of the normal law with the
Poigson law is given by compating the error in (3) with the crror ferm
in Theorem I1I, Chap‘\é\"

Feller has pointedCont that (3) does not give the best first-order
approximation toyf{). The form of (3) s, of course, suggested by the
elassical formulatien of the central Limit law. What Feller suggests is
that instes U:f‘.;l;he variable

,s’\ z r— ﬂ'p
o\ = e——
R\ ) Vg
W "(':‘@;ns"lder the variable
REECEL S
{n + Dpe
Thisleads to the same limit theorem, but the error in the approximation
euuﬂfz
) o e
5 on{n + 1)pq

is much neater than that in (3). We present here slight modification

of Feller's argument:
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Theorem IX. The probability of r successes in n Bernoullian trials
is approximately

l2w0%4<1)pﬂ—%exp(““ Fégij:i§£§+'}iﬁ)'

The ratio of the correct result to this approximation is

(g — p)u’ {(p® + ¢yt uiQ
P [+ 6/ (n 4+ Vpg T3+ Dpg | 4+ Lpy + R]
where N\
_r—f(n+Dp+ 2% O\
Vo + Dpg A\

N’
199 A

6,
(et emm R )

0<8 <1, 0<fy<i
and { \\
7] < 1 Q> 1
24 + Dpg + ulg — ) V@ STpg + wipal | 120 T 18
The proof of this theorem pa;z;.,}l’e'ls very closely the proof we have
given for Theorem VIII. Instead of giving all the details of computa-

tion here, let us merely refer hack to the steps in the proof of Theorem
VIII and indicate the Lhanges to be made. In place of (1) and (2) we

have \\ W
(5) r 4 % ?{’,{”""{“ Dp + u~/{n 4 L)pg

\: 3 (n—’,—l)‘p( + u (—+T)}0 !

(6} :‘»~-?'+—=' (n+ Dg — u+/n + Dpe

\.\; = (n + 1)g( —u \[( + l)ﬁ')

Before applying Stirling’s formula to f{r), we multiply and divide by
n + 1 to get

a4 Ve —
5O =y 1)rizzr§~ f)rl'

Now, for (n + 1)! we use Stirling’s formula as given by Theorem I,
Chap. 7. Forr!and (n — #)!we use the form given in Prob. 8, Chap.
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7. The resulting approximation to f(r) then simplifies to
1 .

e

Now, we take Jogarithms and substitute from {5} and (6).I

log fry = —log v/ 2r(n -+ L)pg

~ (1 o) e (o)
— (+ g (1 — u 4 Iﬁ) log (1 - u\/(?_?%l\)g)}

At this stage, we can see why this seemingly more complicatedform of
the problem leads o a simpler and more efficient estimate of the error
term. In the proof of Theorem VIII, we used 2 series.ﬁg(})ﬁnsion for
something of the form (1 + = + y) log (1 + 7). Herepit is simplified
to the form (1 4+ z) log (1 +a). The Macl%ujin formula with
remainder gives ¢

x® x*,".’*ﬁx*‘
19g(1+x)=x"'§+:{{\.'4(1+$)4 0<8<1).

Therefore

‘2;2:.'” 3 4 s
(M A 4 z) log (1 + ) =$“4?.%2"‘%+% TIF a°

Tt is now only a matter of rogtine computation to complete the proof
of Theorem IX. We usex(¥) twice, first with

oV T
\\ E=VN@m T D

then with N\&
K\ P
D P TN+ Dy

ThG,QQ\WO multiply by — (n+ 1)p and —(n + g, respectively., and
add. “The first-degree terms cancel; the second-degree terms give Us
—u2/2; and the other three terms in (7) give us the first three ferms,
respectively, in the error in the logarithm. Finally, the error term
designated by R is that due to the Stirling approximation. The bound
on it is computed directly from (1), See. 53, and Prob. 10, Chap. 7.

We shall have more to say about Theorem IX in the next c}lapbel'
where we compare it with the Poisson approximation, There 13 only
one point we should like to make here. The leading logarithmic eIror
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ferm is
g - p)u*

6 v/ {n + 1)pg
which means that in general for fixed (or at Jeast bounded) u the loga-
rithmie error is O(n*). However, all the other terms in the crror
are 0(n~1); and for the one spe cial case p = ¢ = 4 the leading term
vanishes. Therefore, for p = 14, not only is the logarithmic error
smaller than olherwise: it is an infinitesimal of o higher order. The
student should note this observation cuts two ways: (1) The Cahital
limit law approximation is best in the Bernoullian case for(d= 4.
(2) Estimates of the error for p = 14 are of no significangentall for
other values of p; they are of the wrong order of m: ngmlude

REFERENCES FOR FURTHER STUN‘

Cramér, Mathematical Methods of Statistics, Chapa» 15-17.

Feller, “On the Normal Approximation to th‘e@momlaﬂl Distribution,”
Ann. Math, Siat., vol. 16, pp. 319- ‘32‘)\1910

Levy and Roth, Elements of Probabilaly (‘hd,p V.

Uspensky, I ntmducuon to Mathematicg! Probability, Chaps. XIV, XV,

PROBLEMS

1. Unit electrical chargesdve placed at the integer points on the posi-
tive half of the real line. sANinit negative charge is placed at the origin.
By the inverse squar aw the force on the charge al the origin duc to
the charge at the pom & is + 1 /&> —the dircetion of the force depending
on whether thewch#irge at % is positive or negative. The signs of the
charges at the\pomtlve integer points are chosen independently w rith
probability4¥ for each sign at each point. The total force on the
charge at\bhe origin is the sum of the forces due to the indiv idual
chargcs‘ but the probability distribution for this total force is not
nm‘mhl Show that the Lindeberg condition fails beeause of Corollary
1\1;0 Thecrem I,

2. Suppose the unit charges of random sign are placed, not at the
integer points, but at the points v/%k—other conditions the same as in
Prob. 1. Show that Corollary 2 to Theorcm I now applies to give 2
normal probability distribution for the total force.

3. Show that the Lindeberg condition is satisfied by the variables in
Prob, 14, Chap. 8. It now follows (as noted there) that the central

limit law holds for these variables but the weak law of large numbers
does not.
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4. In Probs. 3, 8, and 12, Chap. 8, we asked the student to state
the central limit law for cach of three different sequences of variables.
Verify by Corollary 3 to Theorem 1 that each of these sequences obeys
the law.

5. In Proh. 5, Chap. 8, we asked for a statement of the central limit
1aw for a Polsson sequence of trials. The law does not always hold in
this cage. Use Corollary 2 to Theorem I to find conditions under which
it, does hold. Ans. Zpgs = <. (Scc also Probs. 21, 22 below.)

8. "therc is a sequence of urns Uy, Us, Us, . . . . Theurn Uy con-
tains 1 white ball and & — 1 black balls. One ball is drawn from Us,{
then one from Us, cte. Show that the probability distribution for
the number of white balls in n draws is asymptotically normal. & \)

7. With the sct of urns in Prob. 6, 2 draws (with replacement} are
made from cach urn, and success for each urn is defined @32 white
balls drawn, Show that the probability distribution foffhe number
of successes is not asymptotically normal in this case, )

8. From Prob. 4 above and Prob. 12, Chap. %11; follows that, as
the number m of degrces of {reedom increases, t\-h;g istribution of

¢ 3

X2 = Mmoo ONY
\/E’."?L"»."“

tends to the normal. From this deh{re R. A. Fisher’s substitute for
the x* test when m is large. Agcortling to Fisher, for large m,
VR — V/Im — 1
. . I . . . .
is approximately normalﬁ distributed with variance unity. Hint:
NOVERE < VI 14
is equivalent to/p

W zs

g 3} 1 ——————
Q x*€m—g+tzvam—1l+g

ol
e

As m\%\:ob, this last expression is asymplotic to m F 2z 4/ 2m; there-

fore, )

pr lx2 — < z} ~ pr{v/2x < 2m =1+ 7}
2m

9, Suppose the size of an organism is due to the cffect of a ]{itr;?re

number of independent random impulses 1, & - - - o 4, acting on it In

that order during its lifetime. Suppose, however, that the effect of a

given impulse depends not only on the magnitude of the impu!sc but on

the size of the organism at the {ime of the impulse. [n particular, let
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7, be the size achieved after the kth impulse and assume
Zy = Zya + wilia

_ ?L - Zk_ & ﬂ” .
e = Z.k-l Za Z

Assuming Z; = 1, show that the final size Z,, of the organizm should
have an approximately logarithmiconormal distribution. Hint: %:e
Prob. 24, Chap. &.

10. Indlwdual incomes (within certain ranges) follow a rgdspriable
facgimile of a logarithmiconormal distribution. Devise an ¢planation
for this modeled after the argument in Prob. 9. N \Y

11. By applying the central limit theorem to a sequcn(‘o ot variables
each of whieh has s Poigson distribution, prove the { oﬁb\\ ing asymptotic

estimate for partial sums from the exponcntlal sdties: For large o,
, \.‘

. ¢
= ¢ .[ X x\_xw d.
Bl h \/21

kratiin/a

Hint: In Prob. 8 Chap. §, subgﬁi*tlite a=na k =ne+ 2/ na
12. In Chap. 4 we deseribed aA'vandem wall in one dimension in terms
of a sequence of %tochasth variables. Show that the central limit

theorem applies to th(\\{w driables to give the result that alter a large
number # of jumps

Then,

=

kﬁﬂ"rtz'\/;

b/vm
;ur{a < ¥ < b}~ L e =% dz.

'\ a/+/n \/27
13. Fin ﬁte effect of a translation on the characteristic function.
Ans. b o(t) is the characteristic function for z, that for x — a is
v—“w@@ ®
"M Let © = 2z — 7, where 2 is the number of successes in a single
Bérnoullian trial. Show that the characteristic function for z is

qg-iPﬂ -+ pgiﬁ“ =1 — ?%t“ -+ O(ﬁ)

16. From the result in Prob. 14 show that the characteristic function
for 8, in a sequence of Bernoullian trials may be written

£ B
[1 -+ O(n—%)] .
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16. Apply Prob. 25, Chap. 7, to the resuit of Prob. 15 above to prove
the central limit theorem for Bernoullian trials,

17. Let x be chosen at random between — 15 and 34, Find the char-
acteristic function for . Ans. o) = (2/1) sin (¢/2).

18. Prove the central limib theorem for a sequence of independent
variablos, each distributed as in Prob. 17. Hint: Show that the
characteristic function for Sa 1

19, Let 2 have the density function e=#(z 2 0). Find the charadtel-
istic function for x — Z. Ans. o(t) = e/ (3 ).

90. Prove the central limit theorem for a sequence of indépendent
variables, each having the distribution given in Prob. 19,7

21. 8how that, if z; represents one of 8 Poisson seque'ﬁ}e of trials, the
absolute third moment of z; about its mean is pxg (Pt ¢]) < Dage

29. Show from Prob. 21 that, fora Poisson segl.’g ce of trials,

. » NV
B E e < (Epqu) ;
E=1 . vk’? T
therefore the Liapounoff theorgnt gives the same result for this case as
the Lindeberg theorem does. {(Compare Prob. 5 above.) _

93. Find tho logarithmicwerror ferm of order n in the approxima-
tion (3), Bee. 6% NQ’G& at to get all tcrms of order n¥, we musb
carry the Maclaur\ili .&xpansions for the 10garithms'i}11:nmediabely
preceding (3)—orie)step farther than they are carried in the text.

k )»\3.{" P dns, (@ — D& — 32)/6 V/npn.

24. Complee the result in Prob. 93 with the error term of the same
order in Theorem IX.

Ans(N Designating by e the answer to Prob. 93 and by 5 the error
term bt order n—# in Theorem IX, we have, for z = 1, o] = |e] /2; for
2 =14 |q = |el/11. Bowever, forz = /3, ¢ =0; and, for {roughly)
o > /3%, |d < bl

25. Noting the signs of
show that, if p > 14, the spproximation is better
p < 14, it is better for u > 0. o )

26. Show thatif .1 <p< .9 and n > 1,000, the logarithmic error 10
Theorem IX is given eorrect to two decimal places by the first term
alone,

the first two error terms in Theorem IX_,
for u < 0, while if
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97. Find the probability that in 2,500 Bernoullian trials with p = 14
the experimental ratio r/n will be within .02 of p. Answer the same
question if p = 14. Ans. 9544, 067,

28, In 2,500 Bernoullian trials with p = 14 what is the best upper
bound on |(r/n) — p| that can be obtained with probability .957
with probability .687 Ans. .02, 0L

99. Answer the questions in Prob. 28 for the case p = !4.

Ans. 019, .0093.

30. Tn a Bernoullian scquence of trials with p = 24 how many. frfals
does it take to have |(r/n) — p| < .01 with probability .95¢ ¥ith
probability 687 Ans.  10,08032,500.

31. Answer the questions in Prob. 30 for the case p = },3‘\3’

A@g;s“&,SUL): 2,200.
: }.(§,\V
N

\/
N
N~
-~
\ 9
AN
L))
« N
o\
\”"
2 g

&
o)
¢ LN/
QO
"\‘
4
N
L D
:’xml
v
Nt
O
N
u\.‘“



CHAPTER 10
THE POISSON DISTRIBUTION

In this chapter we want to present two important interpretations of
the Poigson prebability function are=*/rl. One is that it furnishes an
approximation to Bernoullian probabilities for the case of small p.<
This is the classical interpretation, and we ghall investigate it,at
some length, determining how good an approximation the Ifc)\fs%oﬁ
formula furnishes and comparing i with the normal law approximation
(Theorem IX, Chap. 9). Howover, in the modern theory ofy proba-
bility there is another interpretation in which the l’oissgp‘t\‘l‘distribution
appears us the exact solution to a certain general typs afproblem. To
get a representative picture, the student should segithis point of view
too, and it is presented in Theorem IV. \’ 0

The examples in the chapter and those amgng the problems at the
end should give the student some idea of the fmportance of the Poisson
distribution, but we might add that tHere are other topics in the
modern theory of probability not e;{én[ Ynentioned in this book in which
the Poisson formula plays an ippportant role.

70. The Binomiat Limit, ()"

Aswe indicated in Cha}.\s, the Poisson probability function appears
as the limit of the segquence of pseudo—BernouHian probability functions
(1), Sce. 57. Thaflact and 2 slight generalization of it can serve as the
basis for both el& te developments we want 0 present in this chapter;
80 we first t}N\'\ﬁ"cfur attention to the proof that the sequence (1), Sec. 57,
obeys theRdisson limit law.

®) . Ce s
'Kﬁéprem I. If ais a constant and r 15 8 fized positive integer,

) a r B F’_ ¥ _ arg—a'
R (5 9

All this requires is straightforward computation:

g

a r a—r nlar (1 - %)
"C, (—) (1 — 9) - T
kL

" Pin — Yl (1 - %)

17¢
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r(l a)n
Y\ T n— 1 (a—rt+1)

Now,

n
a
— a1
(1 n) P e O\

and in the second fraction thore are a fixed number » of £ fbc'gm s in hoth
numerator and denominator with cach factor tending ty unm There-
fore, this entire fraction tends to unity, and the Lhe(}leem is proved.

In order to present the fundamental steps withle minimum of con-
fusion, we assumed in Theorem I that g was a,cch%tant Actually, the
same result (with the same proof) holds if \\«) Yeplace a by 2 \ulllﬂ..bll?
which tends to @ as #n — . In otherNwords, in place of @, write
a + o{1); in place of a/n, write (a/m)\t o(l/n). We leave it to the
student to check that this does notvaﬁect the above argument, and we
list for reference the following: &3

Theorem II. Asn— w\

nc +o T[1——+o )]’_£¢_+0(1)

71 Approxm»f.ﬁon to Bernoullian Probabilities

It is a goottides to have an estimate of the error in any approxima-
tion fonmula but this seems particularly desirable here, becausc the
Pmsson ‘formula is used as a substitute for the central limit Jaw in the
chge)of Bernoullian trials with small p. To find out just when we
should change formulas, we nced an estimate of the crror in each case.
We have already obtained this estimate for the central limit law, and
now we want to do the same for the Poisson law.

Theorem ITL. If r is a positive integer and ¢ > 0, then

W (BY [ _aYTT _ ae r—{a—m2  rla®—-7% ]
C; (n) (1 E) = exp[ o -+ R + B
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where L _ _
rr+38) o' = 1)
Bl < =7 T 3= o

Let ua write

Then, ~
_eenll — {a/m)I" .
T T ar(n — ! <\

On applying Stirling’s formula, we have

&

s

n—T
eonrttie™ (1 - E) gn N
T \,

e
fnr(n —_ T)ﬂ—»r-}-}faer—-netnx_; \\;

T #
P 1 — E e""“}\
n \Y

e =

therefore )\ |
1) @=a—1+ (n—rt):lczg—\(l - %)~ (n-—?‘)log(l —%)
{ \\./

N 1 r)_
O —-ﬁlog 1 -;-3 €

A&~
::&":
We ﬁ=17ply}z\f), Sec. 53, taking the gmaller estimate for enr and the
lal'gerseé’{ifna.te for e,, and have

QO O IO i S
(.—) 0 <e<< ﬁm - 12(’?’& + %) 12(% — ?‘)(21}, -+ ]_)

where

€ == Ep_p — Ene

Next, we expand the logarithms in series. In each case We have
something of the form log(l — z), where 0<z<1 The Maclaurin
formula with remainder tells us that, if we carry such an expansion

through the term in z**, the remainder is
x?ﬂ dk _ _— xk
k—"zﬁ; log(l - 5) = k—-—-—'—"""(l — i.)k
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where 0 < t < z. Clearly, such remainders are negative and less in
absolute value than
:Ek
Bl — z)F

Bearing this in mind we write

a a a’ ,
(n_r)log(l—ﬁ)_(n_ﬂ(_ﬁ—ﬁ_a A
a* — 2ar
® = e Ty T 2n2 B .“'\ )
7"\
where
Cy 0<se(nony <2070 a¥(p k)
. a\’ 3@\“ ay”
Similarly, ‘ ,\';
T ¥ .
(- I“'g(1 - 'E) e ?%\(n tgt "")
s' 9 a
5} ' T
@ a‘f“r I In? T
where ) N\
(6) 0 < 7 = (.n _;'“‘?'5‘? < 3(?’1. - .P') rd ;
.\'\\.; A (1 B _)3 T 3m — 1)
N\ Tt
Finally, P
A%/
A s.; r
o @ ()5
where 7
“’:’,{\ g2 ?‘2
(8) N 0<r <=

Substituting (3), {5), and {7) in (1), we have

_r—f{e—=n¢ r@ -1
Q 2n + 2n?

—e— 84+ 9+

This completes the proof except for the estimate of B. Tt is casily seelt
that

2r+1 r*3r 4+ 4)
120 = Hen+ 1)~ 12(n — ¥
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so by (2) '@ + &
r2(3r
0 < € < m.
However, from (6) and (8) we have
r¥(3r + 4)
O<ntr<pu-—mn
Therefore,
_ r2(3r + 4)
+r—¢ < VT

Now, we bring in (4) and have

T _ (3r -+ 4) | a®(n =)
Rl =n+7—¢ ol <ln+r el -+ [3] < 2(n — 1) 3(%;-1\11)3
This completes the proof of Theorem IIL A\

L 3

Corollary 1. The probability of r successes inn Bgrpohllian trials
is approximately ’
rl v

X
NN

The ratio of the correct result to this,aﬁpfoximatiou is

w1 )

PPN 1 3
<)ot

This follows immegiif}i;é]y from Theorem III by substituting ¢ = np.
NS

where

72. Comparison #ith the Normal Law

The cstim-‘bé;'of crror given in Theorem IX, Chap. 9, and Corollary
1 above en:a”fj}c us to tell, for any given problem, how accurate each
&ppr<lxilﬁatfon is. So if we have a problem in which there is s_ome
doukt 8% Lo which formula we should use, the best thing to do s to
comptite the crror for each one and sce which is the more .accurate.
However, it is a good idea to have in mind & general description of the
type of problem to which each formula is applicable. TPG purpose of
this scetion is to give the student some such general deseription.

In each case we have described the error by giving the ratio of 1.;he
correet resuls to the spproximation in the form of an exponential.
This is & very convenient form for reading off relative ervors. The

approximation
el 42
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indicates that the exponent should give us a good idea of the relative
error. For numbers that we should expect to find in error terms, this
approximation is really quite satisfactory. For instance, e* = 1.105,
e% = 1,051, e = 1.01005. So, in studying thesc error terms, we
shall compute the exponent and call that the relative error.

For any Bernoullian sequence the normal law approximation gets
better as n increascs; so the natural way to describe its applicability
is to find 2 minimum n for a given degree of accuracy in cach situation.
The accuracy of the normal law depends on the values of w and. gas
well as on the value of n. It is natural to speak of the valug Of u
rather than that of r—though, of course, we have to compuié wirom
r, n, and p—because the tables of values of the normal gli'-;trihution
function are always in terms of w. We include herc g &% computa~
tions from the error term in Theorem IX, Chap. 9, f 01_'%{——-' Tand u =2
—that is, for r one and two standard deviations frOTAJIs mean.  Values
of p are given at the Jeft. The desired degree Qf‘accuracy is given ab
the top. The entries in the table are (I'OUI%E;H off) minimum values
of n. )

NN

Tapize I NumBer oF TrisLS REQUIRED FOR CavEN ACCURACY OF Nonman Law

(=)
p {109 1 5% | 1% 0.1%
5 2.4 }.\ 4 20 200
A o\ 5 50 5,000
3| (\a 10 225 22, 500
20977 25 650 65,000
{5 |~ 20 80 2,000 200,000
P 50 200 5,000 500,000
N0 | 300 | 1,200 30,000 | 3,000,000

&
&)
&

Tm@h. NussER oF TrisLs REQUIRED FoR GIVEN ACCURACY OF Nonman Law
4 (w=2)

P 109, 5% i, 0.1%

5 30 60 300 3,000
4 35 140 3,200 320,000
3 150 600 15,000 1,500,000
.2 400 1,600 40,000 4,000,000
.1 1,300 5,200 130,000 13,000,000
.05 3,200 13,000 320,000 32,000,000
.01 20,000 80,000 2,000,000 20y, 000G, 000
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In the cage of the Poisson law, the situation is somewhat different.
Thie is not an asymptotic formula for Bernoullian probabilities; so there
is & maximum 7 in each case as well as a minimum. In addition to the
restrictions imposed by the question of accuracy, there is the practical

consideration of the uscfulness of the formula itself.

If np is too

large, valucs of r near the mean will be too large for the formula to
There is an excellent set of tables of values of the
Poisson approximalion in Molina’s Peisson’s Exzponential Binomial
Limit, Kew York (1942). These tables are for values of a{= np) from
001 through 100. Let us take this as the range of usefulness of the
formula. There still rermains the guestion of accuracy; and thisy,
depends on n, p, and the deviation |» — np|. Tables 11 and TV give*

bo practical.

TanLe 11T, NuumBeER oF Trisls REQUIRED roi GIVEN ACCURACY OF Po}%’sdﬁ Law

([r —npl =5) R4Z
7 109 LT 19 L (A
_ e I‘ \

1 150-200 — — &8 —
.05 125-1,000 300-700 NN —
.01 1254 250+ 1,250+ —
.00t 125+ 250+ 250+ 12,500+
0001 * * o 1,250+ 12,500+
00001 * * a '1 1,250+ 12,500+

Tapre TV. Nusmur oF TRIALY Rn“c}éfmp ror (v Accunacy or Poissox Law
*n = ol = 10)

P 10\%. " 5%, 1%
1 ’t\"__‘_ . _
i 7N\

05 N\600-1,000 — —
01 & 500 + 1,000+ | 6,000+
RV 500+ 1,000+ 5,000+
. 00B1 * 1,000+ | 5,000+
00001 + * 5,000+

estimatcs from Corollary 1 to Theorem I.II
lowing conventions: In some cascs the in

cannot be attained; we have marked these with a

eases there are both upper and lower limits

Molina's tables; for these we give both

is a lower limit that should be noted while
the range of Molina’s tables; for these we gV

limits.

0.1%

50,000+
50,000+
50,000+

in accordance with the fol-
dicated degree of accuracy

dash (—). Insome

tor n within the range of

In some cases there

le the upper limit is beyond
e the lower limit followed.
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by 2 plus (). Finally, in some cases the indicated degree of accuracy
is guaranteed for all applicable entries In Molina's tables; we have
marked these situations with an asterisk (*).

73. Example—Telephone Trunk Lines

Suppose a large corporation is planning to have a PBX telephone
system ingtalled. They will have a fairly large number n of individual
telephones, but cach will connect into the company switchboard, and
not nearly so many outside lines will be required. If data are ava ila{le
on the average proportion of the time cach telephone is in use for\gut-
side calls, we can make a good guess as to the number of truftilylines
needed for efficient service. Let p be the probability that an(individual
telephone is using an outside line at a given time.  To (ptiznlxt.e such a
probability, we set 60p cqual to the average numbefPef mimites per
hour per telephone spent on outside calls. y §\

Now, we think of the n phones as n indcpendenf “iriala’’  Hach
trial consists of the question of whether anﬁcfh a cerlain telephone
requircs an outside line at a certain timesLe variable r {(which we
ordinarily think of as the number of ¢ gialicsses ') then represents the
number of trunk lines in demand at, g{’gii"en time. 'The serviee should
be reasonably efficient if the probakility 18 fairly large (say .93) that the
number 7 of lines in demand Joes not exceed the number available.
That is, if k& is the number of Jines to be installed, we want

PR\Y
\<'~pr{r <kl = .95

To estimate this .pf:ob ability from the normal law, we note thatr <k
means O\
O o kom

P\ vnpg — v/npg )
and, t@:e"‘probability of this latter inequality is approximately

QO T T
'\/ﬂ f e dz,

According to a table of the normal distribution, this integral is .95 if
the upper limit is 1.65. Therefore, we get approximately 95 per cent
efficiency if the number of trunk lines is

k= np + 1.65 +/npg.

In general, p is rather small in this problem; so we could hope to get 2
reasonable cstimate from the Poisson formula.  This procedure involves




sec. 70] TIIE POISSON DISTRIBUTION 187
choosing & so that

g e ‘(??.L])f S .05.
i
r=k+1

The telephone enginecrs prefer this solution to the problem because it
requires no computation. Molina’s tables include a section on cumula-
tive probabilities such as the one above, and the required value of & can
be read off directly from the tables.

74. Example—Counting Bacteria

To count the bacteria in a given culture the usual proeedure ig o)
dilute the substance in which they are contained until a single dtop of
the mixiure will contain on the average 50 few bacteria that théyidan be
counted by direet observation under the microscope. Ii wei'keep track
of the proportions used in diluting and the size of the d'fq})s studied, a
little simple arithmetic takes us back from the average'count per drop
to the count per unit volume in the original cultu’:be.’

The point that interests us here is that thergdga Poisson probability
distribution for the number of hacteria obgefr}re’d in a single drop under
the microscope. Welet the individual basteria represent * trials” with
suceess defined as “contained in the dyjpkuhder ohservalion.” Clearly,
the probability of success on a sinffe frial is extremely gmall—small
cnough for the Poisson approxim@tion to be very accurate. The proba-
bility of being in the dropis apfiarently the same for cach of the bacteria;
and if we assume that the'probability of success for a single bacterium
is independent of the presence or absence of others in the drop, we have
a Bernoullian sequenge’of trials, and Corollary 1 to Theorem 11T gives
us the result. \ ™ ]

These remzx(l%}hfumish 5 test of the bacteriologist’s experimental

technique. {The record of a large mumber of observations should s'how
an essent'(aﬂ’y Poisson frequency distribution for the count on a s'mgle
ohsefvation, Otherwise, the procedure used in mixing and gelecting &

drop Would be open to question.

75. Exact Poisson Distributions

One of the most profitable uses of the Poisson probability function

is found in problems concerning the probability of oceurrence of a given
number of events of a certain type within a given timse interval. For
problems of this kind we can formulate some rather geners:1 hypotheses
from which it will follow that the Poisson distribution. is the actual

distribution, not merely an approximation.
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Suppose we are interested in the oeceurrence within a given time
interval of events of a certain type (e.g., disintegrations of atoms in
a given radioactive souree or claims against an insurance ¢ompany).
Let us distinguish three different possibilities:

(a) Exactly one event of the given type within the given time i
The probability of this we shall designate by p(f).

(b) No events of the given type within the given time i The
probability of this we ghall designate by g{f). ~

(¢) More than one event of the given type within the given tihe L.
The probability of this, we shall designate by e(t). O\

AN

TLet us now make the following bypotheses—not necessirily provable

in any particular application, but certainly eminenﬂ(%'casonable:

{1) The probabilities p, ¢, and e depend (as \Lndicat.(:d by the nota-
tion) only on the duration of the time int@w\ai, not on the time it
begins. O

{2) For disjoint time intervals the péaﬁn‘cnce of (@), (b), or {r) In
one interval iz indcpendent of the gejsiil't-s in the other intervals.

(3) ¢(0) = 1, and ¢ has a contintious derivative with g'(0) = —a.
Notc that intuitively this says'that in time zero we expeet no events,
and as ¢ increases, the prolga@ilit-y of no events decreases.

4) ey = off) ast 2O

\\

Theorem IV. _Subject to the hypotheses (1), (2), (3), and (1) above,

the probabiiit-y\bff:amcbly r events within a time interval of length 1 is
&

¢ pey (@

r!

"Lét.\us divide the given time inlerval into % disgjoint subintervals,
efeh of length ¢/n, The probability that r of these subintervals will
contain one event cach and the others none follows [beeause of hy-
potheses (1) and (2)] the Bernoulli formula. The only other way to geb
r events is 1o have more than one in some subinterval. The probability
of this latter possibility is, by hypothesis (4), o(1/n) for each subinter-
val, therefore less than or equal to o(1/n) = o(1) for at least one.

Thus,
o= QT 0
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Now all we have to do is note that by hypothesig (3) and Prob. 21,

Chap. 7,
£y _ al 1y
q(ﬁ) - _E*H(R)’
t } i i
?’() b Q(a) - ()
al 1
Wt (a)
and we have

ro =[S o[-+ G oo

With the unspecified o functions properly chosen, this holds for each n;
thus it holds for the limit as n — o, and the desired regtltfollows from
Theorem 1L \%

therefore

1l

76. Example—Radioactive Disintegrations \‘\\

The emission of a particles by a radioagtive source furnishes a good
illustration of the uses to which Theorem 4V can be put. The disin-
tegration of a single atom of radiumj{fei instance) is accompanied by
the emission of a single particie), “This process secmns to take place
purely by chance so0 that we canndt say that under given conditions &
given radioactive source will\émit a certain number of « particles il’.l a
given period of time. Q@'@fé’ver, we can say that there is a.pr‘obabihty
distribution for each»of ‘the various possibilities (no emissiOns, one
emission, more thaty ohe), and the hypotheses (1), (2, '(3) and {4)' of
Sec. 75 can besadvanced as reasonable assumptions m cnnnef;tlon
with those probabilities. Therefore, hy Theorem IV, there i§ a Poisson
probabilitydistribution for the pumber of « particles emitted by a
given sofiece within a gpecified time interval. .

Bx nieans of an instrument called the Geiger counter, the phymclsit
ca}t\a}ctuallv count individual e particles. T the source strength 1
adjusted <o that the average pumber-of @ particles entering Fhe counter
in a reasonable time interval (say 10 seconds) is something easy to
count (say 5 or 6), then by reading the dial on the counter at the speci-
fied intervals the experimenter can oot a large pumber of Fgadlngs on a
quantity (the number of hits) which has & Poisson probabiiity distribu-
Hion. Tt follows that the frequency distribution for the various read-
ings should be easentially that of the Poisson formula.

It turns out that Geiger counter experiments actually do give such

Q)
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results, and this can be taken as experimental evidence in favor of the
assumption that the hypotheses (1), (2), (3), and {4) of Sec. 75 are
applicable to the problem.

77. Two Views of the Same Problem

We have presented the problem on telephone trunk lines as a
Bernoullian sequence with a Poisson approximation and that of the «
particles as a sirictly Poisson case following the hypotheses in Sce. 73.
Actually, we can look at each of these problems in the other way.

To fit the telephone problem to hypotheses (1), (2), (3), and (4)of
Sec. 75, we consider not the number of telephones m use alamven
instant but the number of telephones beginning & call durir s given
fime interval. Looked at in this way, the telephone prqbl'le.m seems to
fit these hypotheses very well; and if we take as the t-j_mi:’ ahterval under
consideration the average length of a call, we get QS‘B}ntially the same
information. \

To see the o particles as a Bernoullian sequeﬁ&c, we let a single atom
represent & trial and define success as disingegvation during the specified
time interval. Then the assumptions tfat the probability of disinte-
gration is the same for cach atom anglftaha{; the atoms act independently
give us a Bernoullian sequence withgery small p.  So the answer i the
game a8 before, N

Now, one of these analyses' givés the Poisson formula as an approxi-
mate answer, while the othe} gives it as the exact answer, This means
that the two scts of h{péthcses are not completely equivalent, and
who is to say whick™set is the correct one? Experimental evidence
indicates sumetl}'uﬁ like Poisson distributions for these and many other
phenomena, bugit'can never be proved experimentally that the Poisson
either is or i€ 0ot the cxact distribution in any casc. The discrepancy
betweenﬁa’§foximate and exact solulions is certainly within the range
of expetimental error and chance fluctuation in statistical data.

oE;éaé'ntially, it boils down to a guestion of which explanation we
fh’*efér, and the present-day tendency is to use something on the order
of the argument in Sec. 76 whenever possible.

REFERENCES FOR FURTHER STUDY
¥ry, Probability and Its Engincering Uses, New York (1928), Chap.
VIIL
PROBLEMS
1. Let a certain volume be divided into n equal subdivisions, and
suppose there are & particles distributed in this volume in such a way
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that for cach particle the probability of being in a given subdivision is
the same for all subdivisions. Suppose, further, that the probabilities
for one particle are independent of the positions of the others. Show
that for n and & both large and of the same order of magnitude the num-
ber of particles per subdivision has cssentially a Poisson distribution.

9. Forpudlate a set of hypotheses modeled after these in Sec. 75 but
phrased in terms of particles distributed in space as in Prob. 1.

3, Fit the problem of counting bacteria into the model of Prob. 1;
into that of Prob. 2. _

4, There are many examples that parallcl the problem of counting '
hacteria almost exactly—counting white blood corpuscles, cour}i'{ing
yeast spores In suspension, counting grit particles in labricating eHyete.
"Add some more examples to this list. A

5. Ti amap of London is divided into equal squares andthe locations
of hits by “buzz bombs” during 1944 recorded on the xdap, show that
there should be something like 2 Poisson distributionforthe number of
hits per square. PN

Problems 6 to 121ist a number of phenom@rigix\which might reasonably
be expecied fo have Polsson distribut.iong.: In each case formulate the
problem specifically as & sequence of B&}mou]lian trials and as a situa-
tion satisfying hypotheses gimilar o\ those in Qec. 75. Criticize each
formulation, giving your opinion ‘Gwith reasons) as o the correctness of

the assummptions made. K

6. The number of niits in a chocolate almond bar.
7. The number of 1;3rpographical arrors per page in 8 newspaper.
8. The numberof times per day your telephone rings. -
9. The numBer of calls per day answered by the fire department in
a large uty\\\ . .
10. The'number of tornadoes hitling within a county in a certamn
numbgeli’of years for the counties in the “tornado belt” of the Middle
Wésthy ™ ' _
Qﬁ- The number of meteorites that strike the earth in agiven period
of time. .
19. The number of twins bort in a given cib
period of time.
13. Add other examples of patural p

Poisson distributions.
14. Tn Prob. 8, Chap. 9, We took 1 ball from each wrn and found 2

limiting normal distribution for the number ?f _Whit‘;‘ ;Jf:ins- fsrzips}slz
we take & sequence of sequences ting of 1 ¢raw

y hospital in & given

henomena that should give

of trials consLs
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firgt urn, 2 independent draws from the second, . . . & independent
draws from the kth, . . . . Show that as & — c« the probability
fuhetion for the number of white balls on the kth sequence tends
to the Poisson probability function.

16. In statistical mechanics each “microscopic system” (atom or
other fundamental unit) may be in any one of a large number of
“states”’ (e.g., energy lovels). In the so-called classical statistics it is
assumed that all states are equally likely and that the statc of one
system is independent of those of the others. Show that subject
to these assumptions the number of microscopic systems in a “ rfOro-
scopic system” (large collection of microscopic ones) havi ingen, gmn
state should follow a Poisson digtribution.

16. In the matching problem (see Sce. 33) we toun‘d that the
probability of exactly r correspondences was "

¢ £
< S
e .

(—1)
rl B AN\
= : K9,

k=0 g

S

Show that, as n — =, this tends to a Poissen probability function.
17, A deck of cards is shuffled; then the cards are turned up one at a
time, each card being dlscarded after it is turned. The player calls
the ca.rds of the deck in order (AS KS , 28, AH, , 20, call-
ing a card each time he turns.one. bhow that there is a Pm%son proba-
bility distribution for the number of cards he calls correctly.

18. In the draft lo tq‘y in 1940 something like 10,000 numbers were
drawn from a fishbow) one after the other. Each registrant in the
draft had been asmgnéd a registration number, and the lottery assigned
him an order_guwiber determined by the position of his registration
number in thtﬁequence of drawings. Show that the Poisson distribu-
tion giv %ﬂte probability that a given number of registration numbers
will equal he corresponding order number,

LN 8how that the probability function in Prob. 16 converges to the
Lolsson. function so rapidly that there is virtually no distinetion Lo be
made between Probs. 17 and 18 even though the number of items
being matched is 52 in one ease and 10,000 in the other.

20. Find the valucs of the Poisson probabilitics for ¢ = 3 andr = 0,
1,2, .. .,10. (Use Molina’s tables, if available.) Draw.a graph.

21. What is the probability of 100 successes in 10,000 Bernoullian
trials withp = 01? Hint: UseStirling’s formula. Ans. .01/ /2.

22. Find the characteristic function for the Poisson distribution.

Ans.  explale® — 1]
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23. Find the characteristic function for the number of successes in a
gingle Bernoullian trial. Ans. g -+ pet.

24, Using the results of Probs. 22 and 23, prove Theorem I by the
method of characteristic functions.

25, Prove Theorem II.

26. Using hypotheses (1) and (2) cStac 74, and considering the subdi-
vision of tho time ¢ into equal subintervals, show that ¢(t) = [g{¢/n)]".

27. From Prob. 26, hypothesis (3), Sec. 75, and Prob. 26, Chap. 7,
show that ¢t} = e, '

p ™
\
A
“\\‘ }../
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7
N\
t"’\\'
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CHAPTER 11
THE LAWS OF LARGE NUMBERS

The laws of large numbers (particularly the weak law) hold in guite
4 wide variety of cases. We shall not atlempt to give a complobe
deseription of all of these. Instead, we shall prove one or two PRI
theorems concerning the validity of each law and then furn tdgbh&e
examples. . O

7%
< D

78. Proof of the Weak Law K7\
R W
Many interesting cases of the wesak law of Iargé?}umbcrs ean be
derived from the following rather trivial lemma. O
INY

Lemma 1. If {#.} is a sequence of st-ogha}tié variables with

—r %

lim va,r(yn);.:’ ’ﬁ,
then, for every fixed ¢ > 0, ‘.}:":'

3

lim prilih — 7ol > ¢} =0.
fi—r @ :‘u‘\
This follows immediately from Tshebyshell's inequality (Thearem
V1, Chap. 6). Lety'= var{y,); then,

w\,) _ 1
PR, prilys — Gol > ton} <o
Setting e ‘a\ts-;, we have

9

«d B
¢

A prilys — Bl > & <

A\
3}1 for fixed ¢, the right-hand side tends to zero by bypothesis.

"Tarning to the law of large pumbers itself, let us tuke a sequence {2}
of stochastic variables and let

B, = var (i xk).
k=1

One of the s he weak law depends on the behavior of

B. and nothing more. _Let us begin with that.
194
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Theorem I.  If B, = o(nf), the weak law of large numbers holds,

This follows immediately from Lemma 1. For the y, of the lemma,

we use
n
Mn = l (xk - zk).
i
k=1

From () of Theorem IV, Chap. 6, we have

var(M,) = _i-’;; O\
O

50 our present hiypotheses imply those of the lemma, and the résult on
applying Lemma 1 18 exactly the weak law of large n{nibers—see
Definition 3, Chap. 8. O

The student should note that Theorem I can be apphied to dependent
as well as independent variables.  In dependent, éascs the behavior of
B, may be difficult to determine; but if this cap'be done and B./n*— 0,
then the wealk law applics. Let us turn oW to some corollaries in
which conditions for the weak law are stated in terms of the individual
variables ;. instead of in terms of the Fariance of the sum. As usual,
we shall designate var(zi) by by Hyom Corollary 2 to Theorem VII,
Chap. 6, we sec that, if the var'{cf:ules 3 are uncorrclated by pairs, then
B, = Th.. In these cases we gan give & number of useful eharacter-
izations of the eonditiong under which the weak law holds.

Corollary 1. 1f tkié\ variables ax are uncorrelsted by pairs, each of
the following conditions is sufficient for the weal law of large numbers:
A
(@) maxy = o{n) _
RN
(6} The variances by are uniformly bounded

(¢} The variables x; are unsformly bounded .
(d) The variables x5 are identical and have second moments

Thege results all follow immediately from Theorem L. If the varia-

bles 2, ave Lotally independent, we can use the method of characteristic

functions to show that in the ease of identical variables the existence of

first moments is sufficient for the weak taw to hold. (See Prob. 14 ab
the end of this chapter.}
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79. Convergence in Probability

The weak law of large numbers involves a special casc of what iy
knowh 8 eonvergence in probability. If 41, Y2, Y5 - - - 1S 2 SEquence
of stochastic variables and ¢ is & constant, we say that y. converges in
probability 1o @ provided thaf, for each e > Q,

lim prily. —al <€ =L

s w
Clearly, in this terminology the weak law of large numbers says that
I, converges in probability to zero. N

Convergence in probability has many of the formal properties of
ordinary convergence of a sequence of numbers or functiogs{' bt these
do not follow just because we have used the word ““convergence.”’  We
must prove them. -The student should note that egéfi’bf the proofs
below begins just like the proof in any caleulus boolg afthe corres pond-
ing property of ordinary convergence of sequ(:nces;,Ebut glightly differ-
ent considerations are necessary to finish the 31:00[" in each case.

Theorem II. If y. converges in prqb@lﬁility to a and z, converges
in probability to b, then 9

a)
~

(@) yn + 7» converges in prpbéﬁiiity to a4+ B,
() g2 cOnverges in prqbab'iiity to ab.
(€) yn/2n convergesin }Qobabi]jty to a/b provided that b 7 0.

To prove (a), WO }r(}h, ;;hat
(%) — @+ D) = (o = )+ (= D)

8O Ve \u
\:"}.‘I(yn 4 2) — @+ B)| < lyn — al + lza — Bl

Now,}fi}e usual argument is that if the right-hand side js small so is the

mle;ft»;"afxd eonvergence of the sum is proved. Here, bowever, the ques-
tioh is & litile more complicated. We are concerncd with the probabil-
Tty that these differences are small, and the argument runs something
like this: Because of the above inequality,

| g+ 2) = @ =B 2 ¢
implies that ' -

. ; .
. 2
(or both). Therefore, by (d) of Theorem I, Chap. 2,

|yt — @] = or  |z.— b _>_§
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il + ) = @4 812 <97 e =l 2 oren =112 5]

Spr[l%—&&él+'pr|lzn—blzf—§]-

The last inequality is obtained from (e) of Theorem I, Chap. 2. Now,
each of these last two probabilities tends to zero; therefore the first
one does, and the theorem is proved.

The proofs of (h) and (£} proceed along exactly the same lines once
we get the necessary inequalities set up. IFor the produets we start,
with the identity

Yotn — ab = (yn — @)t — b) + alza — B) + blya — a). LD

TFrom this it follows that g0

lyatz — ab] < |yn — alize — 8] + lallzn — b + Bllpps* d
. A\
and again the probability that the left-hand side islizger than ¢ may

be shown to be less than or equal to the sum of Qrobabilities each of
which tends to zero. A

The identity we need for {c} iz \ N
o _a_ @m0 = 2) + @0 2 | G =0,
b b+ blen 5 0) b

From this it follows that, for |z, | < 5],

ve a) N — oS e lallb — 2 Y
W B O oo - B T

The left-hand side may, be too large beeause 2. — b| is 8o large in
comparison with [b| {Hat the first fraction has a small denominator; or it
may be too Iémrgp\bebausc one of the numerators on the right is large.
Each of those pbssibilities has probability tending to zero, and the
result followsn the usual manner.

80. Applications to Sampling

"ho/ideas in this chapter find a great number of applications in
the theory of sampling, If the student wants a thorough treatment of
this subject, we must refer him to a trealise on gtatistics. In this
section we shall indicate only a few results that follow more or less
easily from the theorcms we have proved.

Let us recall the picture (see Sec. 64) of a sequence of indep‘endent
random samples from some population. First, let us organize the
terminology and notation we want to use.
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The populaiien has:

A distribution function F{z)—equal to the probability that the
measurement being studied is less than or equal to z

A probability (or density) function f{x)

A mean I

A variance o2

Other moments in case we need them

The sndividual samples are independent stochastic variables @, cach
having the distribution function F(z) of the population. Theréfore,
each 2, has mean Z and variance ¢ KO\

The sample aggregate is the sequence of stochastic variables Ty, Tz
Xg, . - -y %a LD termos of these variables we definc the fsflpwixlg:

n

The sample mean: ™ = % E L1 .m}\‘

k=1 \
n ::\\‘

The sample variance: §* = % (2 = x"‘,\)‘2
P

The sample distribution: F*(z). Thlb is 1/n times the number of
values of & for which zx < &. A\

The sample relative frequency™ F*(x). Incascthe samples are discrete
variables we let f*{x) be 1;’\% Fmes the number of values of k for which
7, = z. In the contingous case we aubdivide the range of sample
values into disjoint i‘n%rvals and define [*(z) at the mid-point of each
of these as 1/7 times’the number of values of & for which ¢ is in the
subinterval.

At thig pqu'ﬁ we should pause to emphasize that x* and s* are
stochastic watiables in contrast to T and o? which are {unknown) con-
slants, \ Turthermore, for cach &, F*(z) s & stochagtic variable, and 50
is f4(m); while F (z) and f() are fixed functions of .

\infst, lot us compute a few moments:

Theorern IIL E(x*) = &
This follows immediately from the fact that E(xe) = Z for each k; 50

E(z*) = %E Ew) = - uf =

Theorem IV, var(z*) = g
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By Theorem V, Chap. 6

var(s®) = 2 var (%)

Zg?
T n?
0.2
=
Theorem V. E(s?) = (n — 1)o*
n
First, we note that N
1 0'\“\'
st = (22 — 2z%e; + %) O

1 N
== ) x} — *%
- m\\.

The result now follows as soon ag Wwe note that
O

E _1. a2 =1 E(x2)=£ (2%%\2)..-_ g+-‘2
n & n & 7 ?‘s'lf =7 £

and « \
) *
E(@*Y) = var(z*) + [B(w)]? = % + Z
As a direct application of {d) of Gotollary 1 to Theorem I we have the
following: RA
Theorem VI. z* cqm.%}gés in probability to Z.

Trom this and (b At Theorem 11 it follows that &** converges in
probability to &> By applying (d) of Corollary 1 to Theorem I to the
sequence {x},\\}g‘ﬁ'e see that Tzi/n converges in probability to ¢® + 2
Combining.: $hese results by () of Theorem 1L, we have the following:

N
'N{t\abf'em VIL. s? converges in probability to o®.

ast result that s is o reasonable estimate
lue of 52 hag a large
e a fixed value of 7

Tt would appear from this1
of o2, 1t s, in the sense that for large n a single va
probability of being close to 0%, However, if we tak
(large or small) and take & sequence of m sample aggregates, each con-
sisting of n samples, and compute s* for each one, then we can apply
(d) of Corollary 1 to Theorem I to the sequence of sample variances to
find that as m — % the arithmetic mean of these converges in proba-
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bility not to ¢? but to {n — 1)e*/n. For large n, this discrepancy, is
not worth worrying about, but in general we can make our estimate
of % more precise (in the sense just noted) by using, instead of &%,

, nst 1 AN 1 2
““‘?i‘wl[zxi‘%@x")]'

To return to the discussion of sample means in Sec. 64, let us take s’
as an estimate of . Then by the gentral limit theorem,
(1) prile* — 2 < as’ A/ np = g et dz. N
. - —a \/21"

N

A quick look at a table of the normal distribution now gi\\-‘é&}xs the

results most commonly associated with s’ «\
A< 6755 1 N
(2) »r lx - -'I?l = '\/’.F_L = :2"1“\\

S!

3) pr {lm* - »\/‘E] o .6?3%@:’: %

S

7

Finally, let us note thaf, for each , -
‘ pric: < 2} e T @);

so the variable F*{(z) is, for caclg, just the mumber of successes in
n Bernoullian trials with p =F(:z:) We have seen in any number of
instances that for a Bernoullan scquence E(r/n) = p; so BE(F¥) = ¥,
and the weak law of 1a’rge;\numbers applies (the Bernoullian case can
be made to fit any of the “onditions listed in Corollary 1 to Theorem 1)
to tell us as followg:)

¢
Theorem YQIL For each z, F*(z) converges in probability to F(z).

s

In thgﬁécr&te case {possible values of the samples form a diserefe
set) the same argument tells us that, for each z, f*(x) converges in
pncjbﬁiiility to f(z). In the continuous case it is & little more compli-
Sated. To have the sample relative frequency converge to the density
function, we must increase the number of intervals as we increase the
number of samples. A theorem of this sort can be obtained, but we
shall not go into the details here.

81. Example—A Numerical Problem

By way of illustration of the ideas suggested in the last section,
let us take & set of data and compute some of the quantitics we have
been talking about. The datain the aecompanying table are just some



guc. 81] THE LAWS OF LARGE NUMBERS 201

we made up, but they will serve as an cxample. Wehave assumed that
the problem was one in which the sample variables automatically have
integer values. Perhaps they are the count on something—e.g., the
number of defective cartridges in a ease or, the number of bad pot;toes
in a bushel.  In our table the column labeled z gives the values of the
gample variables; r is the number of samples producing the indicated
value. The sum of the r column gives us n, the total number of sam-
ples, and the next column, labeled r/n, gives what we have called the
sample relative frequeney. The other ¢columns are for convenience in
computation. Note that the sum of the rr column gives 2z, and the\
sum of the r2? column gives 2z}

- 2\AD
Tapre oF HYPOTHETICAL SampLt Data : l.\
z ¥ rin rE ra? \ 3
———— w\\)
0 3 003 0 0
1 15 015 15 W15
2 44 .044 g8 4" 176
3 89 .089 2gmN| 801
4 133 133 (532 2,128
5 160 60 [N 800 4,000
6 162 162 N 972 5,832
7 137 gl w9 | 6713
8 102 +102 816 6,528
9 69 LON\.0069 621 5,589
10 31{;\ .041 410 4,100
1 (g5 025 275 3,025
12 | s ¥ 012 144 1,728
13 jonS B 005 85 845
N 2 002 28 312
! 15~ 1 001 15 225
j \\ {000 | 1.000 | 6,007 | 42,017
~N _

From this tablc it appears that
"

6,007 _ '
000 = 6.007,

T
2

1,000
2
g% = g% [42,017 — -(%’-%%%] = 5.980,
sr

:/—?_; = /.00698 = 0.0806.
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On the basis of this information we can say that the population mean

% should be approximately 6. In fact, from {3), Sec. 80 it follows that,

if we estimate
: 5026 < £ < 6.088,

there is a probability of approximately 24 that we are correct.

We shouid like to call special attention to the way in which we
have stated the significance of (3), Sec. 80,in thisproblem. Throughall
the discussion in the preceding section we regarded z* as the stochastic
variable, not £, Therefore, it would be improper to interpret (3), Sec.
80, as saying that

pr{5.926 < Z < 6.088} ~ 2. O\
If % has & probability distribution, we have not made any stidy of it;
g0 we shonld not interpret our results as probabilities coficerning Z.

Finally, it follows from Theorem VIII that for eachevatue of x there is
a reasonably large probability that the value of 7/ listed in the table
is close to the value of the population probabil'\ty function f(z).

A

82, The a Posteriori Approach o

The weak law of large numbers &ppljé{i o a Bernoullian sequence of
trials gives us the information thate 3§

. ALY B
m o {5 a) <] =

The direct physical interpr;\zhation of this is that, if p is known because
of the nature of the e¥periment, the Iaw of large numbers gives us a
prediction as to the fisture of the results. Tt is quite natural, however,
to use it the otherGray. Given the result of a large number of trials,
we might rcasénzbly say that the law of large pumboers lends ecredence 10
the assumgtibh that the (presumably unknown) value of p is close to
r/n. &

Hp\\x;éi?er, the direct attack on this latter problem would seem o he
ilitohgh Bayes’ theorem—(1), Sec, 21, After all, the value of pis the
hygothesis, and the experimental ratio r /n is the result; so any proba-
bility for p on the basis of a knowledge of r/n would seem to Le an a
posteriori probahility. H we try to solve the problem in this manner,
we meet with the difficulty always encountered in the use of Bayes’
theorem; #i2., to find the a posteriori probability of a certain hypothesis,
we must have a priori probabilities for all possible hypotheses. In this
particular case, we want the conditional probability that

r
;lﬂp <
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given that there were » suceesses in # frials. To use Bayes’ theorem,
we need a set of a priori probabilities for all values of p between zero
and one.

Tor the sake of getting a problem set up, let us assume that, a priori
p is uniformly distributed on the unit interval. Thas is, for

0<a<b <1,
pria <p<Lhl =b—a

There is no really convineing justification for this assumption, but it
gives us something to work with. From it we can compute the condi>
tiona! probabilities, A

preafe < p S0 ( "
given that there were r successes in « trials. Not only that, but we
can prove the following: 2, N\

%4

o\
Theorem IX. If pria < p < b} = b — &, thed !

v

I 7, \y
lim pre. | rtl pl g}]‘ﬁ 1
f— @ :“s’

n+ 2
for every constant ¢ > 0. R\

Let us divide the unit intewa;l;tip into & equal subdivisions. Then
the events B; of (1), Sec. 2tnare the events “p lies in the 4th sub-
division,” which we shallapproximate by p = i/k. Thus

K :
O Bl =g
AN/ .
Now, A will beythe event “r successes in n trials.” 8o, by Theorem I,

Chap. 4, ()"
&

iy AN
protar = (3) (1 - i

Henbe) by (1), See. 21,

) S @ (-2
<p) ==

N

= 4/k used to represent the events Bi.

s t roximations :
subjeet {o the 2pp p ceurate as k— o and as this

These approximations become more 2
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happens, the two sums above tend to definite integrals. Therefore,

fh er(l — I)”"‘. d
procda <p < b} =t ——————
[Tt = oy

] b B
TBr+iLn—r+1) f (1l — )" da.

In other words, the conditional probabilitics for the values of p are

represented by a stochastic variable whoge density function is N\
A S ) L Oy
B(r—}-l,n-—r—i—l) O ‘
Now (Prob. 17, Chap. 7), this variable has ean N
41 M‘\ﬁ'
n+ 2 \¥%

and variance

¢+ D —r 4+ N

(n T 2)7n R0
Sinee this latter is elemly O(n™1), the result follows from Lemma 1.

Having manufaciured a probahility” distribution for p, we arc (in
contrast to the situation in the :.pﬁé(:eding section) entitled to make
statements of the form prie <P < 8} = 1. Belore we regard this as
a great forward step, howeven, we should take a closer look at the inter-
pretation that is to be ]{Euﬁ:d on & statement of this sort, Stated n
words, Theorem IXG ,s&ys something to this cffect: If a number p is
chosen af randomsbetween 0 and 1 and a Bernoullian sequence of
experiments dg,\zi‘séd having this number as the probability of success,
then, knowing ’hmt this experiment produced r successes in n trials, we
can say thatthe chanees are that the number chosen was closc to r/n.
It is the';flecessity for an a priori assumption that robs this interpreta-
tion oFMost of its usefwness.  Without such an assumption we cannob
thake direct probability statcments about p, but we can say (by direch
application of the weak law) that there is a large probability for the
correctness of the obvious estimate p == r/n. This being the case, it
follows from Theorem VIII that, if we consistently make estimates of
this sort, there is a Targe probability that we shall be right most of the
time. Most authorities prefer this latter analysis of the problem.

83. Proof of the Strong Law

The necessary and sufficient condition for the strong law of large
numbers to hold is as yet unknown, The best known theorem is that
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of Kolmogoroff to the effect that the strong law holds provided that
by
7
k=1
is convergent, We shall not attempt to prove this theorem here.
Instead, we shall impose & much stronger hypothesis which makes the
proof easier but is still satisfied in many practical cases.

Lemma 2. If a stochastic variable z has a fourth moment, it hasa
gecond moment, and E(x?) £ [E{ah)P .
. ¢\
This follows from Schwarz’s ineguality {(Theorem VTTI,&;Cﬁha.iJ. 8).
We replace z by 2% and y by 1, and Schwarz’s inequalitygays just what
we want it to, o °

R
Lemma3. Ifzy, s, %3, . . . isasequence of ipd(':f)endent stochastic
variables with . = 0 [or each &, and if the'fg&rt-h moments of the xx's

are uniformty bounded, then N\

B [(gl%)ﬁ-} = O(w)-

7f the fourth moments are bounded, it follows from Lemma 2 that
the second moments arefga.” Leb K be the bound on 2l the second and
fourth moments. If\ixe‘ “oxpand {Zzz)*, we get terms of three types:

7 terms of thg(fi@t"fn xf
Snln — 1):,t{arms of the form iz}
Other jernds in which at least one variable appears to the first power

#

. 2 8 - .
Sinceseach x;, has mean zero and the variables are independent, each
terfiyin our third eategory has espectation zero.  Hence,

V .
E [(lek)‘i] _ 2‘ Hwh) + ;E(xg.m(xg)
) < nK + 3u{n — DE?
= 0(n?).

is a sequence of independent

Theorem X, If zi, ©z, %3 - - -
th unifors ounded fourth moments, then the

stochastic variables with uniformly b
strong law of large numbers holds.
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We apply Tshebyshefi’s inequality (Theorem VI, Chap. 6) to the
variable M2 and get
prid: > ABQIHA < &
Now, we assign { 3o that
(EMH]H = n%;

then
r{|M,] = n %) £ aMEMR).
By Lemma 3,
EQMY) = nt- 0(n?) = 00n; Q
therefore O\

pri]Ma > n ¥} = w¥ - 07 = O(n),

N

If M. does not tend to zero, then for cvery k there is éi;u 2>k for
which |M,| > n'%. For cach k, the probability of? haung such an
n > kis [by {(¢) of Theorem I, Chap 2] less than m'\equa,l to

S pr(|ia] > 1) = Z}O?““%)
n=k

Therefore, the probability that M, d,OGb not tend to zero is less than
or equal to

)
v’

E;o(nwaé)
A N\p=k
for every k. However}iﬁ)(ﬂ‘%) ig a convergent series; so this re-
mainder tends to zero\as k — . Hence, the only nonnegative num-

ber less than or eqiia:i to

A\ -
>’ D 0)
’\.’ n=k
for exery % is zero itself, and the theorem is proved.

Ii\ tHe zs are identical and have fourth moments, then these
filements are uniformly bounded—they are all the same. We thus

dve the following corollary, applicable to many practical cases:
Corollary 1. I the variables zx are independent and identical and
have fourth moments, then the strong law of large numbers holds.

84, Example—Decimal Expansions

Let us say that a number has a normal decimal expansion provided
that each integer 0, 1,2, . . . , 9 appears, on the average, once in every
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10 decimal places. To be more specific, letr; (f = 0, 1,2, ...,9)be
the number of times we find the integer < in the first n decimal places,
Then, the decimal expansion is normal if, for each 3,

lim & = 1

im —
new M 10
The student probably considers the rational numbers the most
familiar ones. Now, a rational number has a repeating decimal
expansion; so the only rational numbers with normal decimal expan-
sions are those for which a eyele in the expansion contains each of the

digits 0, 1, 2, . . ., 9 the same number of times. The simplest.of
these would be O\
'\
123456789 - . g M
m = .01234561‘89012340()(89 . (-s..:“

However, the strong law of large numbers tells 1{s~§h§t, if a number !
is chosen at random between 0 and 1, then thé\probability that ita
deeimal expansion is normal is equal to unityN Yo sce this, we upply
tho strong law ten times. For example, 'sgqimose we are interested in
7's. Let 2N/

_ [ 1 if the kth detifnal place is a 7,
T 0 otherszgetﬁ ”

Clearly, the variables x; are igléfﬁical and have fourth moments. By
Prob. 33, Chap. 3, they are totally independent; so Ceorollary 1 to
Theorem X applies and tells us that

s J

. kml
SN

50)the result is proved as far as 7's are concerned. '
The way to extend this to all 10 digits simultaneously is to consider
the complementary events. We see from the sbove argument that

. T 1] _
P l,}i‘% » 10 =°
foreachi(d =0, 1,2, ... ,9). For different values of {, thee vents

are not mutually exclusive; but by (¢) of Theorem I, Chap. 2, the prob-
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ability of failure for at least one 7 is less than or equal to the sum of 10
geros. Therefore, the probability of a normal decimal expansion is 1,

REFERENCES FOR FURTHER STUDY

Cramér, Mathematical Methods of Statestics, Chaps. 20, 25, 27,
Uspensky, Introduction {0 Mathemalical Probability, Chaps. VI, X, XL

PROBLEMS

1. Show that the strong {(and therefore the weak) law of large num-
bers holds for a Bernoullian sequence of trials. QO

9. Show that the strong law of large numbers holds for any.\PQisson
sequence of frials. (Compare Prob. 5, Chap. 8.) 'Theresare” thus
Poisson sequences for which both laws of large numbers botd but the
central limit theorem does not. A0

3, Show that, as the number of degrees of freddbm tends to =,
x2/n— 1 with probability 1. Hint: Show sthiat Corollary 1 to
Theorem X applics to Prob. 10, Chap. 8. \)

4, Apply Tshebysheff’s inequality (T].’\éerem VI, Chap. 6) to &
Bernoullian sequence of trials to get amddstimate of

9

Db < e]-

: ?‘ N
|| 2
Ans. This,probability is greater than 1 — (pg/ne”).
5. Show that, for z >~9\,
s J

\,

b\ ks 1
> et dz < S e
\7 = &*

\

¢ t\' o = «
Y =« f et dz < f 2e /% dz,
’ x z

N

Hint:

N \\

and j{hlﬁ last expression can be integrated to give the result,
8. Apply Prob. 5 to the estimate (1), Sec. 80, for the ease of Bernoul-
Ut trials to show that, for large =,

pr l_?"_ —_ p[ = el < _2_‘\/@ getn/ing,
2 e/'n
7. Compare Probs. 4 and 6. Note that
e = o(z™!)

as z— ®. (Prove this by Lhopital’s rule.) Therefore, for large »
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the eentral limit theorem gives a closer estimate than Tshebyshefi’s
inequality.

8. Let ®1, 2, . . . , 2. be independent random samples from some
population. Let o, be the mth moment of the population about zero,
and let

n

Q. L "
= - L
ol n &

k=1

Agsuming that ., exists for every m, show that a,, converges in proba-,
bilily 10 o,

9. Using Theorem II, show that any polynomial P{a;, as, . . .z ;\(},})
in the sample moments (see Prob. 8) converges in probabilityto the
corresponding combination of the population moments, 8+

10. 1ixfend Prob. 9 to rational functions of the sanj.pj}é moments,
subject to the provision that the denominator is dif[ei}eﬁt from zero
when the population moments are substituted.

11. Let @1, 3, . . ., #and g1, 42, . . « , ¥» p@idependent sample
measurements of 2 different quantities from, the same population.
(For cxample, @ might be the height of ajehild, y his weight.) Show
thut the sample correlation coefficient 3§ ™

2 (z; — 298 — y¥)
i N

[(Z(re — A (2 — v
converges in pro'nabi]it]&@:t ¢ population eorrclation cocfficient for
these 2 quantitics,

12. YFind the charaeferistic function for the distribution in Whifﬂh
priz = a} = 1, prig< al = 0. Ans. e,

13. Show th ‘b,\f 2 hag a finite first moment, the characteristic fune-
tion for z magnbe written o(f) = 1 + #& + o(f).

14. Using, Probs. 12 and 13, prove Khintchine's theorem: If t-.he
variablef®,, s, 25, . . . are independent and identical and have finite
firs/ Miotents, then the weak luw of large numbers holds.

15."Show that to prove Theorem VII by means of () of Corollary 1
to Theorem I we must assume that the population has a fourth moment,
while the same result can be obtained with no more than second
momants by using Prob. 14.

16. Show that the a posteriori probabilities of Thet_t)rem IX are Bquﬁll
to certain a priori Bernoullian probabilities. Specifically, the condll—
tional probability (given r successes in # trials) that p < (/m) ;Jle' 18
equal to the probability of at least r + 1 successesin 7 -+ 1 Bernoulhan
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trials with probability of success (r/n) — eon each trial. Hint: See
Prob. 25, Chap. 4, and Prob. 11, Chap. 7.
17. Using Prob. 16 and applying the weak law of large numbers to
the auxiliary Bernoullian sequence, give another proof of Theorcm 1X.
18. Show that, if » is chosen at random between — and «, then,

given e > 0,
IE:
pr‘?—% smkx<el-—>1

=1 Q)
asm— . Hint: Note Prob. 33, Chap. 6, and apply (b} of Goxollary
1 ito Theorem 1. o\

19, Let the functions z:(2) be defined on the unit inte‘r,\f’al\’{) <t<1
as follows: AN 3

- '\_:
1 for 2 o 2414 '—2‘5&2}6 !
xu(f) = , N\ M
. % — 1 N 2%
-1 for 5 N:<~}< o5
G=1,2 ...,2 % Drawthe first threc xp()'s.

20. Show that, if ¢ is chosen at .g-é;ﬁdom between 0 and 1, the sto-
chastic variables x:(f) of Prob.‘lﬁvbj’re independent.
21. Show that, if ¢ is chosemat random between 0 and 1,

N\

\gx{% znxk(t) = o} -1,

b=l

22. Let ¢ bg:éﬁosen at random between 0 and 1, and let m.(t) be
the arithmgjaie,\rﬁean of the first n digits in the decimal expansion of £
Show tha@f{mﬂ(t) — 45} = 1.

23. ‘G}anera-]ize the example on decimal expansions at the end of this
ch@ptér. Consider dyadic expansions (see Chap. 8) and, in gencral,

pansions in powers of 1/N where N is any positive integer. Show
that each of these expansions has the normality property with
probability 1.

24. A normal number is one which has the normality property for
every expansion of the type suggested in Prob. 23. Show that with
probability 1 a number chosen at random is normal. Hint: Show
that the probability of failure here is less than or equal to the sum of
an infinite sequence of zeros.
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